Secure Distributed Computation in the Exponent

Article Preview

Abstract:

A secure multi-party computation problem deals with computing a function on any input, in a distributed network, ensuring that no more information is revealed to a player in the computation. New protocols are developed for the following interesting variation on a typical problem of secure multi-party computation: Given secrets shared among a group of players, compute the function value of basic computations, such as interpolation, addition, multiplication or inversion, in the exponent. The protocols can be proven robust and secure in standard computation models.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

994-1000

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. C. Yao, Protocols for secure computations, in Proc. 23rd Annual Symp. Foundations of Computer Science, pp.160-164, IEEE Press, New York. (1982).

Google Scholar

[2] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin, Efficient Multiparty Computations Secure against an Adaptive Adversary, in Proc. Advances in Cryptology – EUROCRYPT '99, LNCS 1592, pp.311-326, Springer-Verlag, Berlin/New York. (1999).

DOI: 10.1007/3-540-48910-x_22

Google Scholar

[3] K. Srinathan, and C. P. Rangan, Efficient Asynchronous Secure Multiparty Distributed Computation, in Proc. INDOCRYPT 2000, LNCS 1977, pp.117-129, Springer-Verlag, Berlin/New York. (2000).

DOI: 10.1007/3-540-44495-5_11

Google Scholar

[4] R. Cramer, I. Damgård, and U. Maurer, General Secure Multi-party Computation from any Linear Secret-sharing Scheme, in Proc. Advances in Cryptology – EUROCRYPT 2000, LNCS 1807, pp.316-334, Springer-Verlag, Berlin/New York. (2000).

DOI: 10.1007/3-540-45539-6_22

Google Scholar

[5] M. Hirt, U. Maurer, and B. Przydatek, Efficient Secure Multi-party Computation, in Proc. Advances in Cryptology – ASIACRYPT 2000, LNCS 1976, pp.143-161, Springer-Verlag, Berlin/New York. (2000).

DOI: 10.1007/3-540-44448-3_12

Google Scholar

[6] W. Du, and M. Atallah, Secure Multi-Party Computation Problems and Their Applications: A Review and Open Problems, in Proc. New Security Paradigms Workshop, pp.11-20, ACM Press, New York. (2001).

DOI: 10.1145/508171.508174

Google Scholar

[7] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz, Efficient Multi-party Computation over Rings, in Proc. Advances in Cryptology – EUROCRYPT 2003, LNCS 2656, pp.596-613, Springer-Verlag, Berlin/New York. (2003).

DOI: 10.1007/3-540-39200-9_37

Google Scholar

[8] P. Feldman, A Practical Scheme for Non-Interactive Verifiable Secret Sharing, in Proc. 28th Annual Symp. Foundations of Computer Science, pp.427-437, IEEE Press, New York. (1987).

DOI: 10.1109/sfcs.1987.4

Google Scholar

[9] R. Gennaro, and M. Di Raimondo, Secure Multiplication of Shared Secrets in the Exponent, Information Processing Letters, vol. 96, pp.71-79. (2005).

DOI: 10.1016/j.ipl.2005.01.015

Google Scholar

[10] M. Abe, Robust Distributed Multiplication without Interaction, in Proc. Advances in Cryptology – CRYPTO '99, LNCS 1666, pp.130-147, Springer-Verlag, Berlin/New York. (2000).

DOI: 10.1007/3-540-48405-1_9

Google Scholar

[11] T. P. Pedersen, Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing, in Proc. Advances in Cryptology – CRYPTO '91, LNCS 576, pp.129-140, Springer-Verlag, Berlin/New York. (1992).

DOI: 10.1007/3-540-46766-1_9

Google Scholar

[12] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Robust Threshold DSS Signatures, Information and Computation, vol. 164, no. 1, pp.54-84. An earlier version appeared in Eurocrypt '96. (2001).

DOI: 10.1006/inco.2000.2881

Google Scholar

[13] L. R. Welch, and E. R. Berlekamp, Error Correction of Algebraic Block Codes, U. S. Patent 4 633 470. (1983).

Google Scholar

[14] C. Peikert, On Error Correction in the Exponent, in Proc. Theory of Cryptography Conference (TCC 2006), LNCS 3876, pp.167-183, Springer-Verlag, Berlin/New York. (2006).

Google Scholar

[15] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, Proactive Secret Sharing or: How to Cope with Perpetual Leakage, in Proc. Advances in Cryptology – CRYPTO '95, LNCS 963, pp.339-352, Springer-Verlag, Berlin/New York. (1995).

DOI: 10.1007/3-540-44750-4_27

Google Scholar

[16] T. Pedersen, A Threshold Cryptosystem without a Trusted Party, in Proc. Advances in Cryptology – EUROCRYPT '91, LNCS 547, pp.522-526, Springer-Verlag, Berlin/New York. (1991).

DOI: 10.1007/3-540-46416-6_47

Google Scholar

[17] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, Secure Distributed Key Generation for Discrete-log Based Cryptosystems, in Proc. Advances in Cryptology – EUROCRYPT '99, LNCS 1592, pp.295-310, Springer-Verlag, Berlin/New York. (1999).

DOI: 10.1007/3-540-48910-x_21

Google Scholar

[18] R. Canetti, Security and Composition of Multi-party Cryptographic Protocols, Journal of Cryptology, vol. 13, no. 1, pp.143-202. (2000).

DOI: 10.1007/s001459910006

Google Scholar

[19] H. Wang, Y. Q. Zhang, and D. G. Feng, Short Threshold Signature Schemes without Random Oracles, in Proc. Progress in Cryptology – INDOCRYPT 2005, LNCS 3797, pp.297-310, Springer-Verlag, Berlin/New York. (2005).

DOI: 10.1007/11596219_24

Google Scholar

[20] E. Modiano, and A. Ephremides, Communication Protocols for Secure Distributed Computation of Binary Functions, Information and Computation, vol. 158, no. 2, pp.71-97. (2000).

DOI: 10.1006/inco.2000.2865

Google Scholar