The Extraction Processes and Biological Characteristics of a New Generation Demineralized Bone Matrixes

Article Preview

Abstract:

An ideal bone graft material should have osteocondutive, osteroindurctive, and osteogenic features. Scientists and doctors have been trying to develop this kind of material for over one century. However, all the features of few materials used in clinic now have been qualified. Recently, COLLOSS, as the new generation bone graft material of demineralized bone matrix, almost achieved this height. The paper presents a general survey of COLLOSS including its extraction processes, biological characteristics, and application prospects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1006-1013

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lee, K.J., J.G. Roper, and J.C. Wang, Demineralized bone matrix and spinal arthrodesis. Spine J, 2005. 5(6 Suppl): p. 217S-223S.

Google Scholar

[2] Zhukauskas, R., et al., Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia. J Biomater Appl, 2010. 24(7): pp.639-56.

DOI: 10.1177/0885328209335101

Google Scholar

[3] Katz, J.M., et al., Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater, 2009. 89(1): pp.127-34.

DOI: 10.1002/jbm.b.31195

Google Scholar

[4] Wang, J.C., et al., A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J, 2007. 16(8): pp.1233-40.

DOI: 10.1007/s00586-006-0282-x

Google Scholar

[5] Chen, W.J., et al., Prefabrication of vascularized bone flap by demineralized bone matrix. J Craniofac Surg, 2007. 18(1): pp.43-8.

Google Scholar

[6] Pietrzak, W.S., J. Woodell-May, and N. McDonald, Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg, 2006. 17(1): pp.84-90.

DOI: 10.1097/01.scs.0000179745.91165.73

Google Scholar

[7] Sundar, S., C.J. Pendegrass, and G.W. Blunn, Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater, 2009. 88(1): pp.115-22.

DOI: 10.1002/jbm.b.31157

Google Scholar

[8] Liu, G., et al., In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng Part A, 2010. 16(3): pp.971-82.

DOI: 10.1089/ten.tea.2009.0516

Google Scholar

[9] Price, C.T., et al., Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2003. 28(8): pp.793-8.

DOI: 10.1097/01.brs.0000058930.38079.24

Google Scholar

[10] Jensen, J., et al., Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep. Open Orthop J, 2010. 4: pp.181-7.

DOI: 10.2174/1874325001004010181

Google Scholar

[11] Nienhuijs, M.E., et al., Healing of bone defects in the goat mandible, using COLLOSS E and beta-tricalciumphosphate. J Biomed Mater Res B Appl Biomater, 2010. 92(2): pp.517-24.

Google Scholar

[12] Huffer, W.E., et al., Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft. J Biomed Mater Res B Appl Biomater, 2007. 82(2): pp.460-70.

DOI: 10.1002/jbm.b.30751

Google Scholar

[13] Termine, J.D., et al., Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem, 1981. 256(20): pp.10403-8.

DOI: 10.1016/s0021-9258(19)68633-3

Google Scholar

[14] Nienhuijs, M.E., et al., Analytical assessment of the osteoinductive material COLLOSSE. J Biomed Mater Res B Appl Biomater, 2009. 89B(2): pp.300-5.

Google Scholar

[15] Delmas, P.D., et al., Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif Tissue Int, 1984. 36(3): pp.308-16.

DOI: 10.1007/bf02405335

Google Scholar

[16] Urist, M.R., Bone: formation by autoinduction. Science, 1965. 150(698): pp.893-9.

Google Scholar

[17] Wildemann, B., et al., Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank, 2007. 8(2): pp.107-14.

DOI: 10.1007/s10561-006-9021-0

Google Scholar

[18] Honsawek, S., R.M. Powers, and L. Wolfinbarger, Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank, 2005. 6(1): pp.13-23.

DOI: 10.1007/s10561-005-1445-4

Google Scholar

[19] Bae, H.W., et al., Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976), 2006. 31(12): pp.1299-306; discussion 1307-8.

DOI: 10.1097/01.brs.0000218581.92992.b7

Google Scholar

[20] Hanson, D.A. and D.R. Eyre, Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem, 1996. 271(43): pp.26508-16.

DOI: 10.1074/jbc.271.43.26508

Google Scholar

[21] Deutsch, H., High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. Spine J, 2010. 10(2): p. e1-4.

DOI: 10.1016/j.spinee.2009.10.016

Google Scholar

[22] Boraiah, S., et al., Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res, 2009. 467(12): pp.3257-62.

DOI: 10.1007/s11999-009-1039-8

Google Scholar

[23] Brower, R.S. and N.M. Vickroy, A case of psoas ossification from the use of BMP-2 for posterolateral fusion at L4-L5. Spine (Phila Pa 1976), 2008. 33(18): p. E653-5.

DOI: 10.1097/brs.0b013e31817c4f1c

Google Scholar

[24] Li, H., et al., Experimental anterior lumbar interbody fusion with an osteoinductive bovine bone collagen extract. Spine (Phila Pa 1976), 2005. 30(8): pp.890-6.

DOI: 10.1097/01.brs.0000159097.74426.ea

Google Scholar

[25] Walboomers, X.F. and J.A. Jansen, Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material. Biomaterials, 2005. 26(23): pp.4779-85.

DOI: 10.1016/j.biomaterials.2004.11.029

Google Scholar

[26] Huffer, W.E., et al., Osteoinduction with COLLOSS, COLLOSS E, and GFm. Adv Exp Med Biol, 2006. 585: pp.87-100.

DOI: 10.1007/978-0-387-34133-0_6

Google Scholar

[27] Kuvat, S.V., et al., Improving bony stability in maxillofacial surgery: use of osteogenetic materials in patients with profound (> or =5mm) maxillary advancement, a clinical study. J Plast Reconstr Aesthet Surg, 2009. 62(5): pp.639-45.

DOI: 10.1016/j.bjps.2007.09.043

Google Scholar

[28] Rodrigues, C.V., et al., Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003. 24(27): pp.4987-97.

DOI: 10.1016/s0142-9612(03)00410-1

Google Scholar

[29] Grzesik, W.J. and P.G. Robey, Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res, 1994. 9(4): pp.487-96.

DOI: 10.1002/jbmr.5650090408

Google Scholar

[30] Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): pp.667-81.

DOI: 10.1016/s0142-9612(99)00242-2

Google Scholar

[31] Bachra, B.N., Calcification in vitro of demineralized bone matrix. Electron microscopic and chemical aspects. Calcif Tissue Res, 1972. 8(4): pp.287-303.

DOI: 10.1007/bf02010148

Google Scholar

[32] Becerra, J., et al., Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: effect of age of cell donor. J Bone Miner Res, 1996. 11(11): pp.1703-14.

DOI: 10.1002/jbmr.5650111114

Google Scholar

[33] Vilalta, M., et al., Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds. Biomaterials, 2009. 30(28): pp.4986-95.

DOI: 10.1016/j.biomaterials.2009.05.056

Google Scholar

[34] Liu, G., et al., Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Calcif Tissue Int, 2008. 83(3): pp.176-85.

DOI: 10.1007/s00223-008-9159-9

Google Scholar

[35] Gurevitch, O., et al., Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells, 2003. 21(5): pp.588-97.

DOI: 10.1634/stemcells.21-5-588

Google Scholar

[36] Muschler, G.F., et al., Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005(432): pp.242-51.

Google Scholar

[37] Ouyang, H.W., et al., Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation, 2006. 82(2): pp.170-4.

DOI: 10.1097/01.tp.0000226232.79106.72

Google Scholar

[38] Tsiridis, E., et al., In vitro and in vivo optimization of impaction allografting by demineralization and addition of rh-OP-1. J Orthop Res, 2007. 25(11): pp.1425-37.

DOI: 10.1002/jor.20387

Google Scholar

[39] Liu, G., et al., Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology, 2008. 56(3): pp.209-15.

DOI: 10.1016/j.cryobiol.2008.02.008

Google Scholar

[40] Breitbart, E.A., et al., Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res, 2010. 28(7): pp.942-9.

DOI: 10.1002/jor.21065

Google Scholar

[41] Woo, C., et al., Effects of bone protein extract on human mesenchymal stem cells proliferation and differentiation. J Biomed Mater Res A, 2006. 79(3): pp.552-6.

Google Scholar

[42] Khan, M.T., I. Stockley, and C. Ibbotson, Allograft bone transplantation: a Sheffield experience. Ann R Coll Surg Engl, 1998. 80(2): pp.150-3.

Google Scholar

[43] Donati, D., et al., Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clin Orthop Relat Res, 2008. 466(2): pp.459-65.

DOI: 10.1007/s11999-007-0055-9

Google Scholar

[44] Yoshida, Y., S. Osaka, and H.J. Mankin, Hemipelvic allograft reconstruction after periacetabular bone tumor resection. J Orthop Sci, 2000. 5(3): pp.198-204.

DOI: 10.1007/s007760050151

Google Scholar

[45] Lode, A., et al., Development of a mechanically stable support for the osteoinductive biomaterial COLLOSS E. J Tissue Eng Regen Med, 2009. 3(2): pp.149-52.

DOI: 10.1002/term.138

Google Scholar

[46] Li, H., et al., Instrumented anterior lumbar interbody fusion with equine bone protein extract, in Spine (Phila Pa 1976). 2007. p. E126-9.

DOI: 10.1097/01.brs.0000255210.67616.2b

Google Scholar

[47] Baas, J., et al., The bovine bone protein lyophilisate Colloss improves fixation of allografted implants-an experimental study in dogs. Acta Orthop, 2006. 77(5): pp.791-8.

DOI: 10.1080/17453670610013015

Google Scholar

[48] Nienhuijs, M.E., et al., Bone-like tissue formation using an equine COLLOSS E-filled titanium scaffolding material. Biomaterials, 2006. 27(16): pp.3109-14.

DOI: 10.1016/j.biomaterials.2006.01.021

Google Scholar

[49] Zou, X., et al., Different mechanisms of spinal fusion using equine bone protein extract, rhBMP-2 and autograft during the process of anterior lumbar interbody fusion. Biomaterials, 2009. 30(6): pp.991-1004.

DOI: 10.1016/j.biomaterials.2008.10.061

Google Scholar

[50] Kasten, P., et al., Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials, 2003. 24(15): pp.2593-603.

DOI: 10.1016/s0142-9612(03)00062-0

Google Scholar

[51] Krugliakov, P.V., et al., [The influence of mesenchymal stem cells on bone tissue regeneration upon implantation of demineralized bone matrix]. Tsitologiia, 2005. 47(6): pp.466-77.

Google Scholar

[52] Kruglyakov, P.V., et al., Effect of mesenchymal stem cells on rejection of xenogenic bone transplant. Bull Exp Biol Med, 2006. 142(4): pp.534-7.

DOI: 10.1007/s10517-006-0410-y

Google Scholar

[53] Honsawek, S., D. Dhitiseith, and V. Phupong, Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai, 2006. 89 Suppl 3: p. S189-95.

DOI: 10.4028/www.scientific.net/amr.55-57.697

Google Scholar

[54] El-Sabban, M.E., et al., Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Regen Med, 2007. 2(4): pp.383-90.

DOI: 10.2217/17460751.2.4.383

Google Scholar

[55] Joseph, V. and Y.R. Rampersaud, Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine (Phila Pa 1976), 2007. 32(25): pp.2885-90.

DOI: 10.1097/brs.0b013e31815b7596

Google Scholar

[56] Li, H., et al., Ectopic bone induction by equine bone protein extract. Adv Exp Med Biol, 2006. 585: pp.393-402.

Google Scholar

[57] Baas, J., et al., Ceramic bone graft substitute with equine bone protein extract is comparable to allograft in terms of implant fixation: a study in dogs. Acta Orthop, 2008. 79(6): pp.841-50.

DOI: 10.1080/17453670810016948

Google Scholar

[58] Nienhuijs, M.E., et al., The Evaluation of Mineralized Collagen as a Carrier for the Osteoinductive Material COLLOSS(R)E, In Vivo. Tissue Eng Part A, (2010).

Google Scholar

[59] Alanay, A., et al., A novel application of high-dose (50kGy) gamma irradiation for demineralized bone matrix: effects on fusion rate in a rat spinal fusion model. Spine J, 2008. 8(5): pp.789-95.

DOI: 10.1016/j.spinee.2007.06.009

Google Scholar

[60] Dodds, R.A., et al., Biomechanical and Radiographic Comparison of Demineralized Bone Matrix, and a Coralline Hydroxyapatite in a Rabbit Spinal Fusion Model. J Biomater Appl, (2009).

DOI: 10.1177/0885328209345552

Google Scholar

[61] Urrutia, J., et al., Autograft versus allograft with or without demineralized bone matrix in posterolateral lumbar fusion in rabbits. Laboratory investigation. J Neurosurg Spine, 2008. 9(1): pp.84-9.

DOI: 10.3171/spi/2008/9/7/084

Google Scholar

[62] Lee, Y.P., et al., The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech, 2005. 18(5): pp.439-44.

DOI: 10.1097/01.bsd.0000175696.66049.f7

Google Scholar

[63] Qiu, Q.Q., et al., Evaluation of DBM/AM composite as a graft substitute for posterolateral lumbar fusion. J Biomed Mater Res B Appl Biomater, 2007. 82(1): pp.239-45.

DOI: 10.1002/jbm.b.30726

Google Scholar

[64] Li, H., et al., The influence of intervertebral disc tissue on anterior spinal interbody fusion: an experimental study on pigs. Eur Spine J, 2002. 11(5): pp.476-81.

DOI: 10.1007/s00586-002-0455-1

Google Scholar

[65] Li, H., et al., Anterior lumbar interbody fusion with carbon fiber cage loaded with bioceramics and platelet-rich plasma. An experimental study on pigs. Eur Spine J, 2004. 13(4): pp.354-8.

DOI: 10.1007/s00586-003-0647-3

Google Scholar

[66] Li, H., et al., Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant. J Biomed Mater Res B Appl Biomater, 2007. 81(1): pp.194-200.

DOI: 10.1002/jbm.b.30653

Google Scholar

[67] Foldager, C., et al., ISSLS prize winner: positron emission tomography and magnetic resonance imaging for monitoring interbody fusion with equine bone protein extract, recombinant human bone morphogenetic protein-2, and autograft. Spine (Phila Pa 1976), 2008. 33(25): pp.2683-90.

DOI: 10.1097/brs.0b013e31817fce91

Google Scholar

[68] Foldager, C., et al., Differences in early osteogenesis and bone micro-architecture in anterior lumbar interbody fusion with rhBMP-2, equine bone protein extract, and autograft. Bone, 2009. 45(2): pp.267-73.

DOI: 10.1016/j.bone.2009.04.240

Google Scholar

[69] Kloss, F.R., et al., [Applying an osteoinductive protein complex for regeneration of osseous defects]. Mund Kiefer Gesichtschir, 2004. 8(1): pp.12-7.

Google Scholar

[70] Schlegel, K.A., et al., Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants, 2003. 18(4): pp.505-11.

Google Scholar

[71] Schlegel, K.A., et al., Expression of bone matrix proteins during the osseus healing of topical conditioned implants: an experimental study. Clin Oral Implants Res, 2006. 17(6): pp.666-72.

DOI: 10.1111/j.1600-0501.2006.01214.x

Google Scholar

[72] Bertamoli. R, Osteoinductive bone regeneration substance Colloss in spinal fusion Eur Spine J, 2002. 11(2): pp.189-90.

Google Scholar

[73] Rupprecht, S., et al., Antibiotic-containing collagen for the treatment of bone defects. J Biomed Mater Res B Appl Biomater, 2007. 83(2): pp.314-9.

Google Scholar

[74] Camargo, P.M., et al., Bovine-derived bone protein extract in the treatment of mandibular Class II furcations. Compend Contin Educ Dent, 2002. 23(11): pp.1023-8, 1030, 1032 passim; quiz 1042.

Google Scholar

[75] Williams, D.F., On the nature of biomaterials. Biomaterials, 2009. 30(30): pp.5897-909.

Google Scholar