[1]
Lee, K.J., J.G. Roper, and J.C. Wang, Demineralized bone matrix and spinal arthrodesis. Spine J, 2005. 5(6 Suppl): p. 217S-223S.
Google Scholar
[2]
Zhukauskas, R., et al., Histological and radiographic evaluations of demineralized bone matrix and coralline hydroxyapatite in the rabbit tibia. J Biomater Appl, 2010. 24(7): pp.639-56.
DOI: 10.1177/0885328209335101
Google Scholar
[3]
Katz, J.M., et al., Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater, 2009. 89(1): pp.127-34.
DOI: 10.1002/jbm.b.31195
Google Scholar
[4]
Wang, J.C., et al., A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J, 2007. 16(8): pp.1233-40.
DOI: 10.1007/s00586-006-0282-x
Google Scholar
[5]
Chen, W.J., et al., Prefabrication of vascularized bone flap by demineralized bone matrix. J Craniofac Surg, 2007. 18(1): pp.43-8.
Google Scholar
[6]
Pietrzak, W.S., J. Woodell-May, and N. McDonald, Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg, 2006. 17(1): pp.84-90.
DOI: 10.1097/01.scs.0000179745.91165.73
Google Scholar
[7]
Sundar, S., C.J. Pendegrass, and G.W. Blunn, Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater, 2009. 88(1): pp.115-22.
DOI: 10.1002/jbm.b.31157
Google Scholar
[8]
Liu, G., et al., In vitro and in vivo evaluation of osteogenesis of human umbilical cord blood-derived mesenchymal stem cells on partially demineralized bone matrix. Tissue Eng Part A, 2010. 16(3): pp.971-82.
DOI: 10.1089/ten.tea.2009.0516
Google Scholar
[9]
Price, C.T., et al., Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 2003. 28(8): pp.793-8.
DOI: 10.1097/01.brs.0000058930.38079.24
Google Scholar
[10]
Jensen, J., et al., Use of carboxymethyl cellulose and collagen carrier with equine bone lyophilisate suggests late onset bone regenerative effect in a humerus drill defect - a pilot study in six sheep. Open Orthop J, 2010. 4: pp.181-7.
DOI: 10.2174/1874325001004010181
Google Scholar
[11]
Nienhuijs, M.E., et al., Healing of bone defects in the goat mandible, using COLLOSS E and beta-tricalciumphosphate. J Biomed Mater Res B Appl Biomater, 2010. 92(2): pp.517-24.
Google Scholar
[12]
Huffer, W.E., et al., Repair of sheep long bone cortical defects filled with COLLOSS, COLLOSS E, OSSAPLAST, and fresh iliac crest autograft. J Biomed Mater Res B Appl Biomater, 2007. 82(2): pp.460-70.
DOI: 10.1002/jbm.b.30751
Google Scholar
[13]
Termine, J.D., et al., Mineral and collagen-binding proteins of fetal calf bone. J Biol Chem, 1981. 256(20): pp.10403-8.
DOI: 10.1016/s0021-9258(19)68633-3
Google Scholar
[14]
Nienhuijs, M.E., et al., Analytical assessment of the osteoinductive material COLLOSSE. J Biomed Mater Res B Appl Biomater, 2009. 89B(2): pp.300-5.
Google Scholar
[15]
Delmas, P.D., et al., Identification of the noncollagenous proteins of bovine bone by two-dimensional gel electrophoresis. Calcif Tissue Int, 1984. 36(3): pp.308-16.
DOI: 10.1007/bf02405335
Google Scholar
[16]
Urist, M.R., Bone: formation by autoinduction. Science, 1965. 150(698): pp.893-9.
Google Scholar
[17]
Wildemann, B., et al., Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank, 2007. 8(2): pp.107-14.
DOI: 10.1007/s10561-006-9021-0
Google Scholar
[18]
Honsawek, S., R.M. Powers, and L. Wolfinbarger, Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tissue Bank, 2005. 6(1): pp.13-23.
DOI: 10.1007/s10561-005-1445-4
Google Scholar
[19]
Bae, H.W., et al., Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine (Phila Pa 1976), 2006. 31(12): pp.1299-306; discussion 1307-8.
DOI: 10.1097/01.brs.0000218581.92992.b7
Google Scholar
[20]
Hanson, D.A. and D.R. Eyre, Molecular site specificity of pyridinoline and pyrrole cross-links in type I collagen of human bone. J Biol Chem, 1996. 271(43): pp.26508-16.
DOI: 10.1074/jbc.271.43.26508
Google Scholar
[21]
Deutsch, H., High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. Spine J, 2010. 10(2): p. e1-4.
DOI: 10.1016/j.spinee.2009.10.016
Google Scholar
[22]
Boraiah, S., et al., Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res, 2009. 467(12): pp.3257-62.
DOI: 10.1007/s11999-009-1039-8
Google Scholar
[23]
Brower, R.S. and N.M. Vickroy, A case of psoas ossification from the use of BMP-2 for posterolateral fusion at L4-L5. Spine (Phila Pa 1976), 2008. 33(18): p. E653-5.
DOI: 10.1097/brs.0b013e31817c4f1c
Google Scholar
[24]
Li, H., et al., Experimental anterior lumbar interbody fusion with an osteoinductive bovine bone collagen extract. Spine (Phila Pa 1976), 2005. 30(8): pp.890-6.
DOI: 10.1097/01.brs.0000159097.74426.ea
Google Scholar
[25]
Walboomers, X.F. and J.A. Jansen, Bone tissue induction, using a COLLOSS-filled titanium fibre mesh-scaffolding material. Biomaterials, 2005. 26(23): pp.4779-85.
DOI: 10.1016/j.biomaterials.2004.11.029
Google Scholar
[26]
Huffer, W.E., et al., Osteoinduction with COLLOSS, COLLOSS E, and GFm. Adv Exp Med Biol, 2006. 585: pp.87-100.
DOI: 10.1007/978-0-387-34133-0_6
Google Scholar
[27]
Kuvat, S.V., et al., Improving bony stability in maxillofacial surgery: use of osteogenetic materials in patients with profound (> or =5mm) maxillary advancement, a clinical study. J Plast Reconstr Aesthet Surg, 2009. 62(5): pp.639-45.
DOI: 10.1016/j.bjps.2007.09.043
Google Scholar
[28]
Rodrigues, C.V., et al., Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003. 24(27): pp.4987-97.
DOI: 10.1016/s0142-9612(03)00410-1
Google Scholar
[29]
Grzesik, W.J. and P.G. Robey, Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res, 1994. 9(4): pp.487-96.
DOI: 10.1002/jbmr.5650090408
Google Scholar
[30]
Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): pp.667-81.
DOI: 10.1016/s0142-9612(99)00242-2
Google Scholar
[31]
Bachra, B.N., Calcification in vitro of demineralized bone matrix. Electron microscopic and chemical aspects. Calcif Tissue Res, 1972. 8(4): pp.287-303.
DOI: 10.1007/bf02010148
Google Scholar
[32]
Becerra, J., et al., Demineralized bone matrix mediates differentiation of bone marrow stromal cells in vitro: effect of age of cell donor. J Bone Miner Res, 1996. 11(11): pp.1703-14.
DOI: 10.1002/jbmr.5650111114
Google Scholar
[33]
Vilalta, M., et al., Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds. Biomaterials, 2009. 30(28): pp.4986-95.
DOI: 10.1016/j.biomaterials.2009.05.056
Google Scholar
[34]
Liu, G., et al., Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Calcif Tissue Int, 2008. 83(3): pp.176-85.
DOI: 10.1007/s00223-008-9159-9
Google Scholar
[35]
Gurevitch, O., et al., Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells, 2003. 21(5): pp.588-97.
DOI: 10.1634/stemcells.21-5-588
Google Scholar
[36]
Muschler, G.F., et al., Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res, 2005(432): pp.242-51.
Google Scholar
[37]
Ouyang, H.W., et al., Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation, 2006. 82(2): pp.170-4.
DOI: 10.1097/01.tp.0000226232.79106.72
Google Scholar
[38]
Tsiridis, E., et al., In vitro and in vivo optimization of impaction allografting by demineralization and addition of rh-OP-1. J Orthop Res, 2007. 25(11): pp.1425-37.
DOI: 10.1002/jor.20387
Google Scholar
[39]
Liu, G., et al., Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Cryobiology, 2008. 56(3): pp.209-15.
DOI: 10.1016/j.cryobiol.2008.02.008
Google Scholar
[40]
Breitbart, E.A., et al., Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res, 2010. 28(7): pp.942-9.
DOI: 10.1002/jor.21065
Google Scholar
[41]
Woo, C., et al., Effects of bone protein extract on human mesenchymal stem cells proliferation and differentiation. J Biomed Mater Res A, 2006. 79(3): pp.552-6.
Google Scholar
[42]
Khan, M.T., I. Stockley, and C. Ibbotson, Allograft bone transplantation: a Sheffield experience. Ann R Coll Surg Engl, 1998. 80(2): pp.150-3.
Google Scholar
[43]
Donati, D., et al., Allograft-prosthetic composite in the proximal tibia after bone tumor resection. Clin Orthop Relat Res, 2008. 466(2): pp.459-65.
DOI: 10.1007/s11999-007-0055-9
Google Scholar
[44]
Yoshida, Y., S. Osaka, and H.J. Mankin, Hemipelvic allograft reconstruction after periacetabular bone tumor resection. J Orthop Sci, 2000. 5(3): pp.198-204.
DOI: 10.1007/s007760050151
Google Scholar
[45]
Lode, A., et al., Development of a mechanically stable support for the osteoinductive biomaterial COLLOSS E. J Tissue Eng Regen Med, 2009. 3(2): pp.149-52.
DOI: 10.1002/term.138
Google Scholar
[46]
Li, H., et al., Instrumented anterior lumbar interbody fusion with equine bone protein extract, in Spine (Phila Pa 1976). 2007. p. E126-9.
DOI: 10.1097/01.brs.0000255210.67616.2b
Google Scholar
[47]
Baas, J., et al., The bovine bone protein lyophilisate Colloss improves fixation of allografted implants-an experimental study in dogs. Acta Orthop, 2006. 77(5): pp.791-8.
DOI: 10.1080/17453670610013015
Google Scholar
[48]
Nienhuijs, M.E., et al., Bone-like tissue formation using an equine COLLOSS E-filled titanium scaffolding material. Biomaterials, 2006. 27(16): pp.3109-14.
DOI: 10.1016/j.biomaterials.2006.01.021
Google Scholar
[49]
Zou, X., et al., Different mechanisms of spinal fusion using equine bone protein extract, rhBMP-2 and autograft during the process of anterior lumbar interbody fusion. Biomaterials, 2009. 30(6): pp.991-1004.
DOI: 10.1016/j.biomaterials.2008.10.061
Google Scholar
[50]
Kasten, P., et al., Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix. Biomaterials, 2003. 24(15): pp.2593-603.
DOI: 10.1016/s0142-9612(03)00062-0
Google Scholar
[51]
Krugliakov, P.V., et al., [The influence of mesenchymal stem cells on bone tissue regeneration upon implantation of demineralized bone matrix]. Tsitologiia, 2005. 47(6): pp.466-77.
Google Scholar
[52]
Kruglyakov, P.V., et al., Effect of mesenchymal stem cells on rejection of xenogenic bone transplant. Bull Exp Biol Med, 2006. 142(4): pp.534-7.
DOI: 10.1007/s10517-006-0410-y
Google Scholar
[53]
Honsawek, S., D. Dhitiseith, and V. Phupong, Effects of demineralized bone matrix on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai, 2006. 89 Suppl 3: p. S189-95.
DOI: 10.4028/www.scientific.net/amr.55-57.697
Google Scholar
[54]
El-Sabban, M.E., et al., Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Regen Med, 2007. 2(4): pp.383-90.
DOI: 10.2217/17460751.2.4.383
Google Scholar
[55]
Joseph, V. and Y.R. Rampersaud, Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine (Phila Pa 1976), 2007. 32(25): pp.2885-90.
DOI: 10.1097/brs.0b013e31815b7596
Google Scholar
[56]
Li, H., et al., Ectopic bone induction by equine bone protein extract. Adv Exp Med Biol, 2006. 585: pp.393-402.
Google Scholar
[57]
Baas, J., et al., Ceramic bone graft substitute with equine bone protein extract is comparable to allograft in terms of implant fixation: a study in dogs. Acta Orthop, 2008. 79(6): pp.841-50.
DOI: 10.1080/17453670810016948
Google Scholar
[58]
Nienhuijs, M.E., et al., The Evaluation of Mineralized Collagen as a Carrier for the Osteoinductive Material COLLOSS(R)E, In Vivo. Tissue Eng Part A, (2010).
Google Scholar
[59]
Alanay, A., et al., A novel application of high-dose (50kGy) gamma irradiation for demineralized bone matrix: effects on fusion rate in a rat spinal fusion model. Spine J, 2008. 8(5): pp.789-95.
DOI: 10.1016/j.spinee.2007.06.009
Google Scholar
[60]
Dodds, R.A., et al., Biomechanical and Radiographic Comparison of Demineralized Bone Matrix, and a Coralline Hydroxyapatite in a Rabbit Spinal Fusion Model. J Biomater Appl, (2009).
DOI: 10.1177/0885328209345552
Google Scholar
[61]
Urrutia, J., et al., Autograft versus allograft with or without demineralized bone matrix in posterolateral lumbar fusion in rabbits. Laboratory investigation. J Neurosurg Spine, 2008. 9(1): pp.84-9.
DOI: 10.3171/spi/2008/9/7/084
Google Scholar
[62]
Lee, Y.P., et al., The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech, 2005. 18(5): pp.439-44.
DOI: 10.1097/01.bsd.0000175696.66049.f7
Google Scholar
[63]
Qiu, Q.Q., et al., Evaluation of DBM/AM composite as a graft substitute for posterolateral lumbar fusion. J Biomed Mater Res B Appl Biomater, 2007. 82(1): pp.239-45.
DOI: 10.1002/jbm.b.30726
Google Scholar
[64]
Li, H., et al., The influence of intervertebral disc tissue on anterior spinal interbody fusion: an experimental study on pigs. Eur Spine J, 2002. 11(5): pp.476-81.
DOI: 10.1007/s00586-002-0455-1
Google Scholar
[65]
Li, H., et al., Anterior lumbar interbody fusion with carbon fiber cage loaded with bioceramics and platelet-rich plasma. An experimental study on pigs. Eur Spine J, 2004. 13(4): pp.354-8.
DOI: 10.1007/s00586-003-0647-3
Google Scholar
[66]
Li, H., et al., Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant. J Biomed Mater Res B Appl Biomater, 2007. 81(1): pp.194-200.
DOI: 10.1002/jbm.b.30653
Google Scholar
[67]
Foldager, C., et al., ISSLS prize winner: positron emission tomography and magnetic resonance imaging for monitoring interbody fusion with equine bone protein extract, recombinant human bone morphogenetic protein-2, and autograft. Spine (Phila Pa 1976), 2008. 33(25): pp.2683-90.
DOI: 10.1097/brs.0b013e31817fce91
Google Scholar
[68]
Foldager, C., et al., Differences in early osteogenesis and bone micro-architecture in anterior lumbar interbody fusion with rhBMP-2, equine bone protein extract, and autograft. Bone, 2009. 45(2): pp.267-73.
DOI: 10.1016/j.bone.2009.04.240
Google Scholar
[69]
Kloss, F.R., et al., [Applying an osteoinductive protein complex for regeneration of osseous defects]. Mund Kiefer Gesichtschir, 2004. 8(1): pp.12-7.
Google Scholar
[70]
Schlegel, K.A., et al., Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants, 2003. 18(4): pp.505-11.
Google Scholar
[71]
Schlegel, K.A., et al., Expression of bone matrix proteins during the osseus healing of topical conditioned implants: an experimental study. Clin Oral Implants Res, 2006. 17(6): pp.666-72.
DOI: 10.1111/j.1600-0501.2006.01214.x
Google Scholar
[72]
Bertamoli. R, Osteoinductive bone regeneration substance Colloss in spinal fusion Eur Spine J, 2002. 11(2): pp.189-90.
Google Scholar
[73]
Rupprecht, S., et al., Antibiotic-containing collagen for the treatment of bone defects. J Biomed Mater Res B Appl Biomater, 2007. 83(2): pp.314-9.
Google Scholar
[74]
Camargo, P.M., et al., Bovine-derived bone protein extract in the treatment of mandibular Class II furcations. Compend Contin Educ Dent, 2002. 23(11): pp.1023-8, 1030, 1032 passim; quiz 1042.
Google Scholar
[75]
Williams, D.F., On the nature of biomaterials. Biomaterials, 2009. 30(30): pp.5897-909.
Google Scholar