Finite-Time Control of Fuzzy Continuous-Time Systems with Exogenous Disturbance

Article Preview

Abstract:

In the paper, new results on finite-time control of fuzzy continuous nonlinear systems subject to exogenous disturbance are presented. Applying the Lyapunov function theory, some sufficient conditions including relaxed ones are established for finite-time stability by fuzzy controller laws.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 219-220)

Pages:

860-864

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tong RM. A control engineering review of fuzzy systems. Automatica, 13(1977), 559-568.

Google Scholar

[2] T.Takagi & M.Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst.,Man, Cybern., SMC-15(1985),116-132.

DOI: 10.1109/tsmc.1985.6313399

Google Scholar

[3] Kazuo Tanaka, Takayuki Ikeda, etc. Wang, Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs. IEEE Trans. Fuzzy Syst., Vol. 6(1998), 250-265.

DOI: 10.1109/91.669023

Google Scholar

[4] Thierry Marie Guerra & Laurent Vermeiren. LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno's form. IEEE Trans. Syst., Man, Cybern. B, Cybern, Vol.40 (2004), 823-829.

DOI: 10.1016/j.automatica.2003.12.014

Google Scholar

[5] E.Kim & H.Lee. New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst., Vol.8 (2000), 523-534.

DOI: 10.1109/91.873576

Google Scholar

[6] M.C. M.Teixeira, E. Assuncao, & R. G. Avellar. On relaxed LMI based designs for fuzzy regulators and fuzzy observors. IEEE Trans. Fuzzy Syst., Vol.11 (2003), 613-623.

DOI: 10.1109/tfuzz.2003.817840

Google Scholar

[7] C.-T. Pang & S.-M. Guu. Sufficient conditions for the stability of linear Takagi-Sugeno free fuzzy systems. IEEE Trans. Fuzzy Syst., Vol.11 (2003), 695-700.

DOI: 10.1109/tfuzz.2003.817859

Google Scholar

[8] Weiss, L., & Infante, E.F. Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control, Vol.12 (1967), 54-59.

DOI: 10.1109/tac.1967.1098483

Google Scholar

[9] F. Amato, b M. Ariola, & P. Dorato. Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica, Vol.37 (2001), 1459-1463.

DOI: 10.1016/s0005-1098(01)00087-5

Google Scholar

[10] Francesco Amato & Marco Ariola. Finite-Time Control of Discrete-Time Linear Systems. IEEE Transactions on Automatic Control, Vol.50 (2005), 724-729.

DOI: 10.1109/tac.2005.847042

Google Scholar

[11] Xin Daoyi & Liu Yungang. Finite-time stability analysis and control design of nonlinear systems. Journal of Shandong Universituy, Vol.37 (2007), 24-30.

Google Scholar

[12] Francesco Amato, Roberto Ambrosinob, Marco Ariola, Carlo Cosentino. Finite-time stability of linear time-varying systems with jumps. Automatica, Vol.45(2009), 1354-1358.

DOI: 10.1016/j.automatica.2008.12.016

Google Scholar