Structural and Optical Properties of ZnO Nanorods Thin Films by Solution-Growth Method

Article Preview

Abstract:

Highly c-axis-oriented ZnO nanorods thin films were obtained on silica glass substrates by a simple solution-growth technique. The most compact and vertically-aligned ZnO nanorods thin film with the thickness of ~800 nm and average hexagonal grain size of ~200 nm exhibits the average visible transmittance 85%, refractive index 1.74, and packing density 0.84. As we demonstrate here, the solution-growth technique was used to produce high-quality and dense ZnO nanorods thin films, and is an easily controlled, low-temperature, low-cost, and large-scale process for the fabrication of optical-grade thin films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Pages:

597-600

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Kligshirn, Phys. Status Solidi B 71 (1975) 547.

Google Scholar

[2] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, H. Morkoç, J. Appl. Phys. 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[3] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14 (2002) 418.

Google Scholar

[4] Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu,Q. Zhao, B. Xiang, R.M. Wang, D.P. Yua, Appl. Phys. Lett. 83 (2003) 144.

Google Scholar

[5] J.C. Lee, K.H. Kang, S.K. Kim, K.H. Yoon, J.S. Song, I.J. Park, Sol. Energy Mater. Sol. Cells 64 (2000) 185.

Google Scholar

[6] J.L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Adv. Mater. 16 (2004) 1661.

Google Scholar

[7] S.J. Henley, M.N.R. Ashfold, D. Cherns, Surf. Coat. Technol. 177 (2004) 271.

Google Scholar

[8] S.H. Jeong, B.S. Kim, B.T. Lee, Appl. Phys. Lett. 82 (2003) 2625.

Google Scholar

[9] L. Vayssieres, Adv. Mater. 15 (2003) 464.

Google Scholar

[10] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105 (2001) 3350.

Google Scholar

[11] Y. Tak, K.J. Yong, J. Phys. Chem. B 109 (2005) 19263.

Google Scholar

[12] Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, R.P.H. Chang, Chem. Mater. 17 (2005) 1001.

Google Scholar

[13] Y.J. Lee, T.L. Sounart, D.A. Scrymgeour, J.A. Voigt, J.W.P. Hsu, J. Cryst. Growth. 304 (2007) 80.

Google Scholar

[14] E. Mirica, G. Kowach, P. Evans, H. Dut, Cryst. Growth. Des. 4 (2004) 147.

Google Scholar

[15] S.H. Mohamed, A.M.A. El-Rahman, A.M. Salem, J. Phys. Chem. Solids 67 (2006) 2351.

Google Scholar

[16] R. Swanepoel, J. Phys. E: Sci. Instrum. 16 (1983) 1214.

Google Scholar

[17] M. Harris, H.A. Macleod, S. Ogura, E. Pelletier, B. Vidal, Thin Solid Films 57 (1979) 173.

DOI: 10.1016/0040-6090(79)90425-5

Google Scholar