Classical-Quantum Correspondence in Two-Dimensional Nanomaterials

Article Preview

Abstract:

Two-dimensional nanomaterials are becoming the focus of intensive research due to their novel physical properties and the potential applications in nanodevices. We define a quantum spectrum function using the eigenvalues and the eigenfunctions in the system of two-dimensional nanomaterials. We find that the Fourier transform of the quantum spectrum function reveals a lot of information of the classical orbits from one point to another for a particle in the two-dimensional nanomaterials. These results give new evidence about the classical-quantum correspondence. All the methods and results can be used in a lot of other systems, including some one-dimensional and three-dimensional systems. The researches about these systems are very important in the field of applied science.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

216-221

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Gutzwiller: J. Math. Phys. Vol. 12 (1971), p.343.

Google Scholar

[2] M.C. Gutzwiller: Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York 1990).

Google Scholar

[3] D. Kleppner and J.B. Delos: Found. Phys. Vol. 31 (2001), p.593.

Google Scholar

[4] M.L. Du and J.B. Delos: Phys. Rev. Lett. Vol. 58 (1987), p.1731.

Google Scholar

[5] M.L. Du and J.B. Delos: Phys. Rev. A Vol. 38 (1988), p.1896.

Google Scholar

[6] M.L. Du and J.B. Delos: Phys. Rev. A Vol. 38 (1988), p. (1913).

Google Scholar

[7] D.A. Sadovskii, J.A. Shaw, and J.B. Delos: Phys. Rev. Lett. Vol. 75 (1995), p.2120.

Google Scholar

[8] P.A. Dando, T.S. Monteiro, and S.M. Owen: Phys. Rev. Lett. Vol. 75 (1998), p.2797.

Google Scholar

[9] A. Matzkin, P.A. Dando, and T.S. Monteiro: Phys. Rev. A Vol. 66 (2002), p.013410.

Google Scholar

[10] S. Gao, X.Y. Xu, H. Zhou, Y.H. Zhang, and S.L. Lin: Acta Phys. Sin. Vol. 58 (2009), p.1473.

Google Scholar

[11] S.H. Deng, S. Gao, Y.P. Li, X.Y. Xu, and S.L. Lin: Chin. Phys. Vol. 19 (2010), p.040511.

Google Scholar

[12] M.R. Haggerty and J.B. Delos: Phys. Rev. A Vol. 61 (2000), p.053406.

Google Scholar

[13] S.H. Deng, S. Gao, Y.P. Li, Y.C. Pei, and S.L. Lin: Acta Phys. Sin. Vol. 59 (2010), p.826.

Google Scholar

[14] J. Main and V.A. Mandelshtam and H.S. Taylor: Phys. Rev. Lett. Vol. 79 (1997), p.825.

Google Scholar

[15] V. Nemanic: Appl. Phys. Lett. Vol. 82 (2003), p.4573.

Google Scholar

[16] M.H. Zhao and Z.L. Wang: Nano. Lett. Vol. 4 (2004), p.587.

Google Scholar

[17] Y.H. Chen, J.W. Dong, and H.Z. Wang: J. Opt. Soc. Am. B Vol. 23 (2006), p.776.

Google Scholar

[18] R.W. Robinett: J. Math. Phys. Vol. 39 (1998), p.278.

Google Scholar

[19] R.W. Robinett: Am. J. Phys. Vol. 67 (1999), p.67.

Google Scholar

[20] J.U. Nöckel, and A.D. Stone: Nature Vol. 385 (1997), p.45.

Google Scholar