Electrical- Magnetic Transport and Magnetoresistance in La 0.7 Ca 0.3 MnO3/BN Composites

Article Preview

Abstract:

The electrical–magnetic transport properties of (La0.7Ca0.3MnO3)(1-x)/(BN)x composites has been investigated systemically by conventional solid-state reaction method. The results of X-ray diffraction (XRD) and scanning electronic microscopy (SEM) show that BN and LCMO coexist in the composites and BN mainly goes into the grain boundary region without any chemical reaction with La0.7Ca0.3MnO3, which are in accordance with the results of the magnetic measurements. It is very interesting that with increasing of BN content level (x < 0.25), the metal–insulator transition temperature (TP) remains constant (nearly at 275K), and the resistivity increases very slowly. But when x > 0.25, TP shifts to lower temperature and the resistivity increases dramatically. The resistivity threshold of the composites occurred at x = 0.25, and specially the magnetoresistance (MR) reaches a maximum value (about 26.32 %) at 100K in an applied magnetic field of 3kOe. The results also indicate that the doped BN has an important effect on the low field MR (LFMR), which results from spin-polarized tunneling.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

379-384

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. Vol. 61 (1988), p.2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[2] M. McCormack, S. Jin, T. H. Tiefer, R. M. Fleming, Julia M. Philips, R. Ramesh, Appl. Phys. Lett. Vol. 64 (1994), p.3045.

Google Scholar

[3] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, L. H. Chen, Science Vol. 264 (1994), p.413.

Google Scholar

[4] M. Ziese, Rep. Prog. Phys. Vol. 65 (2002), p.143.

Google Scholar

[5] A. Gupta, G. Q. Gong, G. Xiao, P.R. Duncombe, P. Truilloud, P. Lecocur, Y. Y. Wang, V.P. Dravid, J. Z. Sun, Phys. Rev. B. Vol. 54 (1996), p.15629.

Google Scholar

[6] L. E Hueso, J. Rivas, F. Rivadulla, M. A. Lopez-Quintela. J. Appl. Phys. Vol. 89 (2001), p.1746.

Google Scholar

[7] Ll. Balcells, A. E. Carrillo, B. Martinez, and J. Fontcuberta. Appl. Phys. Lett. Vol. 74 (1999), p.4014.

Google Scholar

[8] P. Kameli, H. Salamati, M. Eshraghi, M. R. Mohammadizadeh, J. Appl. Phys. Vol. 98 (2005), p.043908.

Google Scholar

[9] D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, P. R. Duncombe, Appl. Phys. Lett. Vol. 75 (1999), p.995.

DOI: 10.1063/1.124577

Google Scholar

[10] Z. C. Xia et al., Solid State Commun. Vol. 128 (2003), p.291.

Google Scholar

[11] V. P. S Awana, R. Tripathi, S. Balamurugan, H. Kishan and E . Takayama-Muromachi, Solid State Commun. Vol. 140 (2006), p.410.

DOI: 10.1016/j.ssc.2006.09.021

Google Scholar

[12] Rahul Tripathi, V. P. S Awana1, Neeraj Panwar, G L Bhalla, H U Habermier, S K Agarwaland H Kishan, J. Phys. D: Appl. Phys. Vol. 42 (2009), p.175002.

Google Scholar

[13] V. P. S. Awana, Rahul Tripathi, Neeraj Kumar, H. Kishan, G. L. Bhalla, R. Zeng, L. S. Sharth Chandra, V. Ganesan and H. U. Habermeier, J. Appl. Phys. Vol. 107 (2010), p. 09D723.

DOI: 10.1063/1.3365412

Google Scholar

[14] H. Y. Hwang, S. W. Cheong, N. P. Ong, B. Batlogg, Phys. Rev. Lett. Vol. 77(1996), p. (2041).

Google Scholar

[15] J. E. Evetts, M. G. Blamire, N. D. Mathur, S. P. Isaac, B. S. Teo, L. F. Cohen, and J. L. MacManus-Driscoll, Philos. Trans. R. Soc. London, Ser. A Vol. 356 (1998), p.1593.

Google Scholar

[16] Guinea, Phys. Rev. B Vol. 58 (1998), p.9212.

Google Scholar

[17] P. A. Joy, S. K. Date, Appl. Phys. Lett. Vol. 76 (2000), p.1209.

Google Scholar

[18] Y. H. Huang, K. F. Huang, et al., J. Solid State Chem. Vol. 174 (2003), p.257.

Google Scholar

[19] B.X. Huang, Y.H. Liu, R.Z. Zhang, X.B. Yuan, C.J. Wang and L.M. Mei, J. Phys. D: Appl. Phys. Vol. 36 (2003), p. (1923).

Google Scholar

[20] J. M. Rubinsten, J. Appl. Phys. Vol. 87 (2000), p.5019.

Google Scholar

[21] D. Das, C. M. Srivastava, D. Bahadur, A. K. Nigam, and S. K. Malik, J. Phys. Condens. Matter Vol. 16 (2004), p.4089.

Google Scholar