A Quantitative Analysis of the Residual Stress and Grain Size Gradient Effects on the Energy Release Rate of a Coating-Substrate System

Article Preview

Abstract:

The surface heat treatment can lead to the residual stress and inhomogenous effects in coating-substrate system. Based on the well-known Hall-Petch relationship between the coating yield strength and its grain size, the inhomogenous effect can be extended to the grain size gradient effect. In this work, a mechanical model of a coating-substrate specimen is developed to quantify the residual stress and grain size gradient effects on the energy release rate of the coating on its substrate. Using a Micro-Composite-Double-Cantilever Beam Model (MCDCBM), the analytic solutions can be derived, and they can be used to characterize the fracture toughness of the inhomogenous coatings on substrates in terms of the critical energy release rate. Finally, a numerical example is presented to show how the critical energy release rate is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

356-362

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.H. Zhang, J.H. Yoon, M.X. Li, T.Y. Cho, Y.K. Joo and J.Y. Cho: Mater. Chem. Phys. Vol. 119 (2010), p.458.

Google Scholar

[2] M. Novák, D. Vojtěch and T. Vítů: Appl. Surf. Sci, Vol. 256 (2010), p.2956.

Google Scholar

[3] K. Spencer and M.X. Zhang: Scripta Mater. Vol. 61(2009), p.44.

Google Scholar

[4] A. Ibrahim, H. Salem and S. Sedky: Surf. Coat. Technol. Vol. 203(2009), p.3579.

Google Scholar

[5] M. Tului, S. Lionetti, G. Pulci, E. Rocca, T. Valente and G. Marino: Surf. Coat. Technol. Vol. 202(2008), p.4394.

Google Scholar

[6] A. G. Evans and J. W. Hutchinson: Acta Metall. Mater. Vol. 43(1995), p.2507.

Google Scholar

[7] L.B. Freund and S. Suresh: Coating Materials: Stress, Defect Formation and Surface Evolution(Cambridge University Press, Cambridge, UK 2003).

Google Scholar

[8] B.Q. Yang, K. Zhang, G.N. Chen, G.X. Luo and J.H. Xiao: Acta. Mater. Vol. 55(2007), p.4349.

Google Scholar

[9] M. Benegra, D.G. Lamas, M.E. Fernández de Rapp, N. Mingolo, A.O. Kunrath and R.M. Souza: Thin Solid Films Vol. 494(2006), p.146.

DOI: 10.1016/j.tsf.2005.08.214

Google Scholar

[10] J. H. Huang, C. H. Ma and H. Chen: Surf. Coat. Technol. Vol. 200(2006), p.5937.

Google Scholar

[11] M. A. Meyers and K. K. Chawla: Mechanical Metallurgy( New Jersey, Prentice Hall 1984).

Google Scholar

[12] O. Kolednik and S. Suresh: Mater. Sci. Forum Vol. 308-311(1999), p.963.

Google Scholar

[13] O. Kolednik: Int. J. Solids Struct. Vol. 37(2000), p.781.

Google Scholar

[14] T. Honein and G. Herrmann: J. Mech. Phys. Solids Vol. 45(1997), p.789.

Google Scholar

[15] G. R. Irwin, in Plastic zone near a crack and fracture toughness,. Proceedings of the 7th Sagamore Ordnance Materials Research Conference. New York 1960, p. IV-63.

Google Scholar

[16] J.R. Rice: J. Appl. Mech. Vol. 35(1968), p.379.

Google Scholar