Solid-State Synthesis and Optical Properties-Controlling Studies of CdO Nanoparticles

Article Preview

Abstract:

CdO nanoparticles with different sizes were synthesized by a simple thermal decomposition reaction of precursor obtained by room-temperature solid-state grinding reaction between Cd(CH3COO)22H2O and NaOH in the presence of PEG400. Composition, structure and morphology of the products were analyzed and characterized by X-ray diffraction technology, Transmission electron microscopy and Fourier infrared spectra. The formation of CdO nanoparticles is thought that the nucleation rate of the reactive system is far excess the growth rate of particle. Optical properties of the products were recorded, and the results show that Ultraviolet-visible (UV-vis) spectra exhibit distinct blue shift in comparison with them of the bulk CdO, which is because that the quantum confinement effect of the products is larger than the Coulomb effect. Photoluminescence (PL) spectra exhibit green and red emission bands around 520 and 720 nm respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

580-585

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Trindade, P. O'Brien and N. L. Pickett: Chem. Mater. Vol. 13 (2001), p.3843.

Google Scholar

[2] R. Jayakrishnan and G. Hodes: Thin Solid Films Vol. 440 (2003), p.19.

Google Scholar

[3] M. Ghosh and C. N. R. Rao: Chem. Phys. Lett. Vol. 393 (2004), p.493.

Google Scholar

[4] M. Ristic, S. Popovic and S. Music: Mater. Lett. Vol. 58 (2004), p.2494.

Google Scholar

[5] W. D. Shi, C. Wang, H. S. Wang and H. Zhang: Cryst. Growth Des. Vol. 6 (2006), p.915.

Google Scholar

[6] H. D. Yu, D. S. Wang and M. Y. Han: J. Am. Chem. Soc. Vol. 129 (2007), p.2333.

Google Scholar

[7] R. Kaur, A. V. Singh and R. M. Mehra: J. Non-Cryst. Solids Vol. 352 (2006), p.2335.

Google Scholar

[8] W. T. Dong and C. S. Zhu: Opt. Mater. Vol. 22 (2003), p.227.

Google Scholar

[9] A. Aakarinejad and A. Morsali: Mater. Lett. Vol. 62 (2008), p.478.

Google Scholar

[10] Y. M. Zhou and X. Q. Xin: Chinese J. Inorg. Chem. Vol. 15 (1999), p.273.

Google Scholar

[11] Y. Chen, J. M. Zhu, X. H. Zhu, G. B. Ma, Z. G. Liu and N. B. Min: Mater. Sci. Engineer B Vol. 99 (2003), p.52.

Google Scholar

[12] Y. H. Chi, J. Zhuang, J. Yu and M. J. Tu: Chinese J. Inorg. Chem. Vol. 20 (2004), p.479.

Google Scholar

[13] T. X. Wang, H. Xiao and Y. C. Zhang: Mater. Lett. Vol. 62 (2008), p.3736.

Google Scholar

[14] Z. J. Wang, H. M. Zhang, L. G. Zhang, J. S. Yuan, S. G. Yan and C. Y. Wang: Nanotechnology Vol. 14 (2003), p.11.

Google Scholar

[15] J. S. Liu, J. M. Cao, Z. Q. Li, G. B. Ji, S. G. Deng and M. B. Zheng: J. Mater. Sci. Vol. 42 (2007), p.1054.

Google Scholar

[16] J. S. Liu, J. M. Cao, Z.Q. Li, G. B. Ji and M. B. Zheng: Chinese J. Inorg. Chem. Vol. 23 (2007), p.833.

Google Scholar

[17] J. S. Liu, Z.Q. Li and J. M. Cao: Prog. Chem. Vol. 21 (2009), p.2542.

Google Scholar

[18] Y. H. Wang: X-ray diffraction technology (Atomic Energy Publications Inc. Bei Jing, 1993).

Google Scholar

[19] J. I. Pankove: Optical processes in semiconductors (Dover Publications Inc. New York, 1970).

Google Scholar

[20] A. J. Skinner and J. P. LaFemina: Phys. Rev. B Vol. 45 (1992), p.3557.

Google Scholar

[21] J. E. Jaffe, R. Pandey and A. B. Kunz: Phys. Rev. B Vol. 43 (1991), p.14030.

Google Scholar

[22] B. S. Zou, R. B. Little, I. P. Wang and M. A. EI Sayed: Int. J. Quantum Chem. Vol. 72 (1999), p.439.

Google Scholar

[23] N. Ueda, H. Maeda, H. Hosono and H. Kawazoe: J. Appl. Phys. Vol. 84 (1998), p.6174.

Google Scholar

[24] A. D. Yoffe: Adv. Phys. Vol. 42 (1993), p.173.

Google Scholar

[25] X. C. Wu, R. Y. Wang, B. S. Zou, L. Wang, S. M. Liu, J. R. Xu and W. Huang: J. Mater. Res. Vol. 13 (1998), p.604.

Google Scholar