New Delay Dependent Stability Analysis for Switched Neutral Systems with Mode-Dependent Delays under Arbitrary Switching Laws

Article Preview

Abstract:

In this paper, the stability analysis of switched uncertain neutral systems with mode-dependent delays under arbitrary switching rules is presented. Based on common Lyapunov functional, and combined with the analysis of matrix inequalities, the delay dependent stability conditions are obtained in the form of linear matrix inequalities(LMIs)which can be easily solved by LMI toolbox in Matlab. Finally, a numerical example illustrate that the proposed criteria are effective.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Pages:

993-1000

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Engell, S. Kowalewski, C. Schulz and O. Strusberg: Proceedings of IEEE, Vol. 88 (2000), p.1050.

Google Scholar

[2] R. Horowitz and P. Varaiya: Proceedings of IEEE, Vol. 88 (2000), p.913.

Google Scholar

[3] C. Livadas, J. Lygeros and N.A. Lynch: Proceedings of IEEE, Vol. 88 (2000), p.926.

Google Scholar

[4] P. Varaiya: IEEE Transaction on Automatic Control, Vol. 38 (1993) , p.195.

Google Scholar

[5] D. Pepyne and C. Cassandaras: Proceedings of IEEE, Vol. 88 (2000), p.1008.

Google Scholar

[6] M. Song, T. Tran and N. Xi: Proceedings of IEEE, Vol. 88 (2000), p.1097.

Google Scholar

[7] P. Antsaklis: Proceedings of IEEE, Vol. 88 (2000), p.887.

Google Scholar

[8] D. Liberzon and A.S. Morse: IEEE Control Systems Magazine, Vol. 19(1999), p.59.

Google Scholar

[9] R. DeCarlo, M.S. Branicky, S. Pettersson and B. Lennartson: Proceedings of IEEE, Vol. 88 (2000), p.1069.

Google Scholar

[10] Z.D. Sun and S. -S. Ge: Automatica, Vol. 41(2005), p.181.

Google Scholar

[11] G. -S. Zhai, X. -P. Xu, H. Lin and A.N. Michel: Nonlinear Analysis: Theory, Methods & Applications, Vol. 65(2006), p.2248.

Google Scholar

[12] W. -H. Chen and W. -X. Zheng: Automatica, Vol. 43(2007), p.95.

Google Scholar

[13] Q. -L. Han: Automatica, Vol. 40(2004), p.1791.

Google Scholar

[14] J.H. Park: Mathematics and Computers in Simulation, Vol. 59(2002), p.401.

Google Scholar

[15] H. Li, H. -B. Li and S. -M. Zhong: Journal of Computational and Applied Mathematics, Vol. 200(2007), p.441.

Google Scholar

[16] L. -L. Xiong, S. -M. Zhong and J. -K. Tian: Chaos, Solitons & Fractals, Vol. 2(2007), p.771.

Google Scholar

[17] J. -W. Cao, S. -M. Zhong and Y. -Y. Hu: Applied Mathematics and Computation, Vol. 189(2007), p.1480.

Google Scholar

[18] S. -Y. Xu, P. Shi, Y. -M. Chu and Y. Zou: Journal of Mathematical Analysis and Applications, Vol. 314 (2006), p.1.

Google Scholar

[19] C. Bonnet, J.R. Partington: Automatica, 2007; Vol. 43(2007), p. (2047).

Google Scholar

[20] J.H. Park, O. Kwon: Applied Mathematics and Computation, Vol. 162 (2005), p.1167.

Google Scholar

[21] X. -M. Sun,J. Fu, H. -F. Sun, J. Zhao: Proceedings of The Chinese Society for Electrical Engineering, Vol. 25(2005), p.42.

Google Scholar

[22] Y. Zhang, X. Liu, H. Zhu: Applied Mathematics and Computation, Vol. 190(2007), p.1258.

Google Scholar

[23] D. -Y. Liu, X. -Z. Liu, S. -M. Zhong: Applied Mathematics and Computation, Vol. 202(2008), p.828.

Google Scholar

[24] Ju.H. Park, O.M. Kwon. S.M. Lee: Applied mathematics and computation, Vol. 196(2008), p.236.

Google Scholar

[25] S. Boyd, El Ghaoui, L. Feron, E.V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory(SIAM, USA 1994).

DOI: 10.1137/1.9781611970777

Google Scholar

[26] S. -S. Zhou, J. Lam: Circuits Systems Signal Procesing., Vol. 22(2003), p.579.

Google Scholar