The Effect of Magnetic Field on the Hydration of Nanoscopic Hydrophobic N-Alkane Plates

Abstract:

Article Preview

The effect of an external magnetic field on the hydration behavior of nanoscopic n-octane plates has been extensively investigated using molecular dynamics simulation in an isothermal-isobaric ensemble. The solute plates with different intermolecular spacing have also been considered to examine the effect of the topology of hydrophobic plates on the adsorption behavior of confined water in the presence of an external magnetic field with an intensity ranging from 0.1T to 1 T. The results demonstrate that magnetic exposure decreases the density of water for the plates with intermolecular spacing of a0 = 4 and 5 Å. This suggests that the free energy barrier for evaporation can be lowered by the applied field, and the hydrophobic solutes consisting of condensed n-octane molecules are apt to aggregate in the aqueous solution. In contrast, the magnetic field improves the dissolution or wetting of solutes comprised of loosely packed n-octane plates of a0=7Å. A magnetic-field-induced adsorption-to-desorption translation, which is in agreement with the experimental results provided by Ozeki, has also been observed for the plates with intermolecular spacing of a0 = 6 Å.

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Edited by:

Quanjie Gao

Pages:

1007-1011

DOI:

10.4028/www.scientific.net/AMR.228-229.1007

Citation:

W. W. Zhang et al., "The Effect of Magnetic Field on the Hydration of Nanoscopic Hydrophobic N-Alkane Plates", Advanced Materials Research, Vols. 228-229, pp. 1007-1011, 2011

Online since:

April 2011

Export:

Price:

$35.00

[1] B. Stuyvena, G. Vanbutselea, J. Nuyensa, J. Vermantb and J. A. Martensa: Chemical Engineering Science Vol. 64 (2009), p. (1904).

[2] J.S. Baker and S.J. Judd: Wat. Res. Vol. 30 (1996), p.247.

[3] A. Fathi, T. Mohamed, G. Claude, G. Maurin and B.A. Mohamed: Wat. Res. Vol. 40 (2006), p. (1941).

[4] J.X. Li, J.X. Liu, T. Yang and C.F. Xiao: Wat. Res. Vol. 41 (2007), p.4595.

[5] A. Vashisth and S. Nagarajan: Journal of Plant Physiology Vol. 167 (2010), p.149.

[6] M. Flórez, M.V. Carbonell and E. Martínez: Environmental and Experimental Botany Vol. 59 (2007), p.68.

[7] A. Vashisth and S. Nagarajan: Bioelectromagnetics Vol. 29 (2008), p.571.

[8] N. Marks and P.S. Szecowka: International Agrophysics Vol. 24 (2010), p.165.

[9] R. Cai, H.W. Yang, J.S. He and W.P. Zhu: Journal of Molecular Structure Vol. 938 (2009), p.15.

[10] K.T. Chang and C.I. Weng: J. Appl. Phys. Vol. 100 (2006), p.043917.

[11] H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa and S. Nakabayashi: J. Phys. Chem. A Vol. 108 (2004), p.1461.

[12] S. Ozeki and I. Otsuka: J. Phys. Chem. B Vol. 110 (2006), p.20067.

[13] K. Higashitani and J. Oshitani: J. Colloid Interface Sci. Vol. 204 (1998), p.363.

[14] K. Higashitani, H. Iseri, K. Okuhara, A. Kage and S. Hatade: J. Colloid Interface Sci. Vol. 172 (1995), p.383.

[15] S. Ozeki, C. Wakai and S. Ono: J. Phys. Chem. Vol. 95 (1991), p.10557.

[16] S. Ozeki, J. Miyamoto, S. Ono, C. Wakai and T. Watanabe: J. Phys. Chem. Vol. 100 (1996), p.4205.

[17] K.T. Chang and C.I. Weng: Computational Materials Science Vol. 43 (2008), p.1048.

[18] S. Vaitheeswaran, H. Yin and J.C. Rasaiah: J. Phys. Chem. B Vol. 109 (2005), p.6629.

[19] D. Bratko, C.D. Daub, K. Leung and A. Luzar: J. Am. Chem. Soc. Vol. 129 (2007), p.2504.

[20] H.J. C. Jorgensen, J.D. Madura and C.J. Swenson: J. Am. Chem. Soc. Vol. 106 (1984), p.6638.

[21] N. Choudhury: J. Chem. Phys. Vol. 131 (2009), p.014507.

[22] N. Choudhury: J. Chem. Phys. Vol. 132 (2010), p.064505.

[23] M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Daggett: J. Phys. Chem. B Vol. 101 (1997), p.5051.

[24] G.Y. Zhang, W.W. Zhang and H.J. Dong: J. Chem. Phys. Vol. 133 (2010), p.134703.

[25] W.G. Hoover: Phys. Rev. A Vol. 31 (1985), p.1695.

[26] W.G. Hoover: Phys. Rev. A Vol. 34 (1986), p.2499.

In order to see related information, you need to Login.