The Catalysis of 3, 8-Substituted Cobalt (II) Deuteroporphyrin Dimethyl Esters to the Oxidation of Cyclohexane by Air

Article Preview

Abstract:

A variety of 3, 8-substituted cobalt (II) deuteroporphyrin dimethyl esters were synthesized and used as catalysts in the oxidation of cyclohexane. The effect of substituents on catalytic activities of 3, 8-substituted cobalt (II) deuteroporphyrin dimethyl esters were investigated. The results showed that the catalytic activities were influenced by the electron effects and steric effects of substituents and the thermal stability of catalysts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1093-1096

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.E. O'Connor, M.W. Gallagher, A.T. Byrne: Photochem. Photobiol. Vol. 85 (2009), p.1053

Google Scholar

[2] W.J. Song, M.S. Seo, S.D. George, T. Ohta, R. Song, M.J. Kang, T.T. Tosha, T. Kitagawa, E.I. Solomon, W. Nam: J. Am. Chem. Soc. Vol. 129 (2007), p.1268

DOI: 10.1021/ja066460v

Google Scholar

[3] R.A. Sheldon, in: B. Meunier (Eds.), in: Biomimetic Oxidations Catalysed by Transition Metal Complexes, editied by Imperial College Press, London, 2000 (Chapter 14).

Google Scholar

[4] S.M. Ribeiro, A.C. Serra, A.M.A.R. Gonsalves: Tetrahedron Vol. 63 (2007), p.7885

Google Scholar

[5] E. Baciocchi, T. Boschi, L. Cassioli, C. Galli, L. Jaquinod, A. Lapi, R. Paolesse, K.M. Smith, P. Tagliatesta. Eur: J. Org. Chem. Vol. 64 (1999), p.3281

DOI: 10.1002/(sici)1099-0690(199912)1999:12<3281::aid-ejoc3281>3.0.co;2-1

Google Scholar

[6] W.Y. Zhou, B.C. Hu, Z.L. Liu: Appl. Cata. A: Gen. Vol. 358 (2009), p.136

Google Scholar

[7] Z. Gross, L. Simkhovich: Tetrahedron Lett. Vol. 39 (1998), p.8171

Google Scholar

[8] M. Castella, F.R. Trull, F. López Calahorra, D. Velasco, M.M. González: Tetrahedron Vol. 56 (2000), p.4017

DOI: 10.1016/s0040-4020(00)00300-8

Google Scholar

[9] Y.K. Konishi, N. Hosomi, S. Neya, S. Sugano, N. Funasaki, H. Suzuki: J. Biochem. Vol. 119 (1996), p.857

Google Scholar

[10] T. Shigeoka, Y. Kuwahara, K. Watanabe, K. Sato, M. Omote, A. Ando, I. Kumadaki: J. Fluo. Chem. Vol. 103 (2000), p.99

Google Scholar

[11] O. Siri, L. Jaquinod, K.M. Smith: Tetrohedron Vol. 41 (2000), p.3583

Google Scholar

[12] K. Ozette, P. Leduc, M. Palacio, J.F. Bartoli, K.M. Barkigia, J. Fajer, P. Battioni, D. Mansuy: J, Am. Chem. Soc. Vol. 119 (1997), p.6442

DOI: 10.1021/ja970882a

Google Scholar

[13] P. Magali, M.M. Virginie, L.Guillaume, L.B.O. Karine, L. Philippe, M.B. Kathleen, F. Jack, B. Pierrette, M. Daniel: Chem. Commun. Vol. 19 (2000), p. (1907)

Google Scholar

[14] J.S. Reboucas, B.R. James: Tetrahedron Lett. Vol. 47 (2006), p.5119

Google Scholar

[15] D.V. Stynes, H.C. Stynes, B.R. James, J.A. Ibers: J. Am. Chem. Soc. Vol. 95 (1973), p.1796

Google Scholar

[16] K. Machii, Y. Watanabe, I. Morishima: J. Am. Chem. Soc. Vol. 117 (1995), p.6691

Google Scholar

[17] J.T. Groves, Y. Watanabe: J. Am. Chem. Soc. Vol. 108 (1986), p.507

Google Scholar