Turbulent Mixing and Scale-Up of Ejectors at High Schmidt Number

Abstract:

Article Preview

Micro- and Macro-mixing models were built and numerical investigation of turbulent mixing in ejectors was carried out. Mixture fraction and its variance presented by Fox were remodeled to demonstrate micro- and macro-mixing performance. The length needed to reach 98% micro- and macro-mixing were founded is functions of uj/um and D/d. The mathematical scale-up models were presented based on the simulation results using least square method for micro- and macro-mixing and five different cases were used to validate the models. The results showed that macro-mixing scale-up model agreed well with CFD simulations but the micro-mixing scale-up model had a less precision compared with that of macro-mixing model. This because that the mechanism of micro-mixing process is very complexity but the CFD models we used in this work are fairy simple.

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He

Pages:

1340-1344

DOI:

10.4028/www.scientific.net/AMR.233-235.1340

Citation:

L. X. Ma et al., "Turbulent Mixing and Scale-Up of Ejectors at High Schmidt Number", Advanced Materials Research, Vols. 233-235, pp. 1340-1344, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.