Fluorimetric Method to Determine Trace Anionic Surfactants Using a Novel Triazene Reagent

Article Preview

Abstract:

Although widely applied in many industries, anionic surfactants (AS) have been shown to contaminate the natural environment. Therefore, the detection of trace amounts of AS in environmental samples is of great interest. Here, we report a novel fluorescence quenching method for the determination of trace AS, specifically, sodium dodecyl sulfate (SDS), using 1-(5-naphthol-7-sulfonic acid) -3-(4-pheny-lazophenyl)-triazene (NASAPAPT). Under optimum conditions, the degree of fluorescence quenching is linearly proportional to the concentration of SDS from 2.08×10-8 to 8.67×10-7mol L-1 with a detection limit of 8.35×10-9mol L-1. The proposed method exhibits high sensitivity and selectivity, yet it avoids the use of toxic organic solvents and tedious solvent extraction procedures. It has been applied to the determination of trace SDS in both natural water and industrial samples with recoveries between 99.04 and 103.58%. Results indicated that the hydrogen bonds formed between NASAPAPT and SDS played an important role in the detection process and that the π→π* transition was crucial for fluorescence of the NASAPAPT complex.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1370-1374

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. H. He, H. W. Chen. J. Anal. Chem. 367 (2000) 270-274.

Google Scholar

[2] E. I. Subbotina, Y. M. Dedkov. Zavod. Lab. 3 (1987) 12-18.

Google Scholar

[3] A. N. Chebotarev, T. V. Paladenko and T. M. Shcherbakova. J. Anal. Chem. 59 (2004) 309-313.

Google Scholar

[4] N. Negoro, H. Konishi and H. Sakamoto. J. Incl. Phenom. Macrocycl. Chem. 62 (2008) 59-63.

Google Scholar

[5] A.F. Lavorante, A.Morales-Rubio and M.De la Guardia.Anal.Bioanal.Chem.381(2005) 1305-1309.

DOI: 10.1007/s00216-004-3029-8

Google Scholar

[6] S. R. Morshed, K. Hashimoto and Y. Murotani. Anticancer Research 25 (2005) 2033-2038.

Google Scholar

[7] D. B. Kimball, M. M. Haley. Angew. Chem. Int. Ed. 41(2002) 3338-3351

Google Scholar

[8] M. B. Gholivand, M. Mohammadi and M. Khodadadian. Talanta, 78 (2009) 922-928.

Google Scholar

[9] Y. Y. Zhao, Q. E. Cao and Z. D. Hu. Analytica Chemica Aata 388 (1999) 45-50.

Google Scholar

[10] Q. E. Cao, Y. Y. Zhao and X. J. Yao. Spectrochimica Acta Part A 56 (2000) 1319-1327.

Google Scholar

[11] Z.Q. Yan,L.Hu and Y.Y. Zhou. Phys. Testing and Chem. Anal.(Part B:Chem. Anal.) 45 (2009)387-389.

Google Scholar

[12] Y.Wan, L.Ye and H.Y. Wang. J. Southwest University (Natural Science Edition) 30 (2008) 25-28.

Google Scholar

[13] S. Xu, B. Liu, H. Tian. Prog. Chem. 18 (2006) 687-697.

Google Scholar

[14] X. Zhang, L. Guo and F. Y. Wu. Org. Lett. 5 (2003) 2667-2670.

Google Scholar

[15] Y. L. Feng, D. Z. Kuang and J. S. Xu. Chinese Journal of Analytical Chemistry 30 (2002) 189-191.

Google Scholar

[16] G. D. Zhou, L. Y. Duang, Fundament of structural chemistry (3ed), Peking University Press, Beijing: 2003, p.225.

Google Scholar