Effects of CuCl Source and Content on Direct Synthesis of Triethoxysilane from Silicon and Ethanol

Article Preview

Abstract:

Effect of CuCl source and content on formation of triethoxysilane in the direct process is described and discussed. The two sources of CuCl and the contact masses from the reduction reaction by silicon and CuCl have been investigated by X-ray diffraction, scanning electron microscope and N2 adsorption-desorption with a purpose of studying the reasons that different CuCl sources cause different reaction effect. We found Si-Cu intermetallics in proportion to the contact area between CuCl and Si. So CuCl with the characteristics of finer particles and high specific surface area is beneficial to form vast scale active Si-Cu intermetallics. The CuCl concentration on the performance of the catalytic reaction between silicon and ethanol was investigated by online gas chromatogram. The catalyst concentration greatly influences various aspects of the direct synthesis of triethoxysilane, including the induction time, the reaction rate, the selectivity and the silicon conversion. The reaction activity and yield of triethoxysilane increase as the catalyst concentration increases. However, the reaction selectivity decreases when the catalyst concentration is more than 5%, in this case the yield of triethoxysilane is slightly lower than 10% catalyst concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1534-1539

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E G. Rochow, J Am Chem Soc. 67 (1945) 963.

Google Scholar

[2] E G. Rochow, J Am Chem Soc. 70 (1948) 2170-2171.

Google Scholar

[3] E. Suzuki, Y. Ono, Chem Lett. 19 (1990) 47-50.

Google Scholar

[4] E. Suzuki, Y. Ono, J Catal. 125 (1990) 390-400.

Google Scholar

[5] E. Suzuki, T. Kamata, Y. Ono, B Chem Soc Jpn. 64 (1991) 3445-3447.

Google Scholar

[6] M. Okamoto, M. Osaka, K I. Yamamoto, E. Suzuki, Y. Ono, J Catal. 143 (1993) 64-85.

Google Scholar

[7] M. Okamoto, M. Osaka, K I. Yamamoto, E. Suzuki, Y. Ono, J Catal. 147 (1994) 15-23.

Google Scholar

[8] R H. Hus, L F. Zhang, M Z. Cai, Catal Commun. 11 (2010) 563-566.

Google Scholar

[9] J J. Peng, J Y. Li, Y. Bai, H Y. Qiu, K Z. Jiang, J X. Jiang, G Q. Lai, Catal Commun. 9 (2008) 2236-2238.

Google Scholar

[10] M. Chauhan, J H. Brian, L P. Keller, P Boudjouk, J Organomet Chem. 645 (2002) 1-13.

Google Scholar

[11] A. Behr, F. Naendrup, D. Obst, Adv Synth Catal. 344 (2002) 1142-1145.

Google Scholar

[12] Z M. Michalska, K Strzelec, J W. Sobczak, J Mol Catal A-Chem. 156 (2000) 91-102..

Google Scholar

[13] A. Behr, N. Toslu, Chem Eng Technol. 23 (2000) 122-125.

Google Scholar

[14] B. Marciniec, H. Maciejewski, U Rosenthal, J Organomet Chem. 484 (1994) 147- 151.

Google Scholar

[15] L Z. Wang, Y Y. Jiang, J Organomet Chem. 251 (1983) 39-44.

Google Scholar

[16] V. Paesschen, V. Gossum, US Patent 4089997 (1978).

Google Scholar

[17] E A. Chernyshev, Z V. Belyakova, L K. Knyazeva, N N. Khromykh, Russ J Gen Chem. 77 (2007) 55-61.

Google Scholar

[18] W E. Newton, E G. Rochow, Inorg Chem. 9 (1970) 1071-1075.

Google Scholar

[19] E G. Rochow, US Patent 3641077(1972).

Google Scholar

[20] Y. Ohta, M. Yoshizako, US Patent 4931578(1990).

Google Scholar

[21] K. Harada, Y. Yamada, US Patent 5362897(1994).

Google Scholar

[22] F D. Mendicino, T E. Childress, S. Magri, K M. Lewis, H. Yu, US Patent 5783720(1998).

Google Scholar

[23] K M. Lewis, R N. Eng, S R. Cromer, A T. Mereigh, C L. Young, US Patent 0065204(2003).

Google Scholar

[24] A R. Anderson, J G. Meyer, US Patent 0229241A1(2003).

Google Scholar

[25] F. Steding, G. Grund, B Standke, US Patent 6727375(2004).

Google Scholar

[26] K M. Lewis, A T. Mereigh, C L. Young, R A. Cameron, US Patent 0060764 (2007).

Google Scholar

[27] T C. Frank, Surface compositions of copper-silicon alloy. Appl surf sci.1982(83),14,359-374.

Google Scholar

[28] R J H. Voorhoeve, J C. Vlugter, mechanism and kinetics of the metal-catalyzed synthesis of methylchlorosilane.Ⅲ. The catalytically active form of the copper catalyst. J Catal.1965,4,123-133.

DOI: 10.1016/0021-9517(65)90003-5

Google Scholar

[29] H. Ehrich, D. Born, K, Richter, J R. Mendau, H. Lieske, Appl Organomet Chem. 11 (1997). 237-247.

DOI: 10.1002/(sici)1099-0739(199703)11:3<237::aid-aoc557>3.0.co;2-4

Google Scholar

[30] H. Ehrich, D. Born, J R. Mendau, H. Lieske, Appl Organomet Chem. 12 (1998).257-264.

Google Scholar

[31] B. Gillot, H. Souha, D. Viale, Kinetic study of the reaction between copper () chloride and commercial silicon or silicides. J Organomet Chem. 27 (1992) 1337-1342.

DOI: 10.1007/bf01142049

Google Scholar