Photocatalytic Oxidation of Shenfu Bituminous Coal and Xilinhaote Lignite with H2O2 over TiO2

Article Preview

Abstract:

Shenfu bituminous coal (SFBC) and Xilinhaote lignite (XL) were subject to photo-catalytic oxidation with hydrogen peroxide over titanium dioxide. The reaction mixtures were extracted with acetone exhaustively. The extracts were analyzed with FTIR and GC/MS. The results show that coals be oxidized selectively and degraded partially. Compared with the bituminite coal, the oxidation effect of the lignite coal with active hydrogens is more obvious. The alkyl side chains of the macromolecules, particularly, chains of methyl, methylene and aromatic, are the most vulnerable in relation to other compounds in coals. Moreover, the increasing of straight-chain alkanes and the decreasing of condensed nucleus in SFBC and XL through oxidation suggest that the oxidation is an effective method of coal utilization with no difficultly, also be friendly towards the environment after treated as well as in the process of the treatment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

1684-1689

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Miura, K. M. Fuel Process. Technol. 2000, 62 (2-3), 119–135.

Google Scholar

[2] Schobert, H. H.; Song, C. Fuel 2002, 81 (1), 15–32.

Google Scholar

[3] Liotta, R.; Brons, G.; Isaacs, J. Fuel 1983, 62 (7), 781–791.

Google Scholar

[4] Italy, M.; Hill, C.; Glasser, D. A. Fuel Process. Technol. 1989, 21 (2), 81–97.

Google Scholar

[5] Li, Y. X.; Xue, B.; Liu, N.; Pradeep, K. A. Coal Conversion 2007, 30 (2), 1–5.

Google Scholar

[6] Liu, Z. X.; Liu, Z, C.; Zong, Z. M.; Wei, X.Y.; Wang, J.; Lee, C.W. Energy Fuels 2003, 17 (2), 424–426.

Google Scholar

[7] Takaaki, I.; Hideyuki, T.; Katsuki, K.; Shigeharu, M. Energy Fuels 1998, 12 (3), 503–511.

Google Scholar

[8] Sevil, Ü.; Zehra, G.; Yalcin, S. P. Energy Sources 1999, 21 (2) , 269–273.

Google Scholar

[9] Huang,Y. G.; Zong, Z. M.; Yao, Z. S.; Zheng, Y. X.; Mou, J.; Liu, G. F.; Cao, J. P.; Ding, M. J.; Cai, K. Y.; Wang, F.; Zhao, W.; Xia, Z. L.; Wu, L.; Wei, X. Y. Energy Fuels 2008, 22 (3), 1799–1806.

DOI: 10.1021/ef700589q

Google Scholar

[10] Wertz, D. L.; Bissell, M. Fuel 1995, 74 (10), 1431–1435.

Google Scholar

[11] Solum, M. S.; Pugamire, R. J.; Grant, D. M.; Kelemen, S. R.; Gorbaty, M. L.; Wind, R. A. Energy Fuels 1997, 11 (2), 491–494.

Google Scholar

[12] Kelemen, S. R.; Gorbaty, M. L.; Kwiatek, P. J. Energy Fuels 1994, 8 (4), 896–906.

Google Scholar

[13] Hayatsu, R.; Scott, R. G.; Moore, L. P.; Studier, M. H. Nature 1975, 257 (10), 378–380.

Google Scholar

[14] Hayatsu, R.; Winnas, R. E.; Scott, R. G.; Moore, L. P.; Studier, M. H. Prepr. Pap.–Am. Chem. Soc., Div. Fuel Chem. 1977, 22 (5), 156–168.

Google Scholar

[15] Yao, Z. S.; Wei, X. Y.; Lv, J.; Liu, F. J.; Huang, Y. G.; Xu, J. J.; Chen, F. J.; Huang, Y.; Li, Y.; Lu, Y.; Zong, Z. M. Energy Fuels 2010, 24 (3), 1801–180.

Google Scholar

[16] Faria, A. L.; Leod, T. C. O. M.; Assis, M. D. Catal. Today 2008, 133–135, 863–869.

Google Scholar

[17] Greggio, G.; Sgarbossa, P.; Scarso, A.; Michelin, R. A.; Strukul G. Inorg. Chim. Acta 2008, 361 (11), 3230–3236.

DOI: 10.1016/j.ica.2007.10.042

Google Scholar

[18] Tolvanen, P.; Mäki-Arvela, P.; Sorokin, A. B.; Salmi, T.; Murzin, D. Y. Chem. Eng. J. 2009, 154 (1–3), 52–59.

Google Scholar

[19] Michelin, R. A.; Sgarbossa, P.; Scarso, A.; Strukul, G. Coordin. Chem. Rev. 2010, 254 (5-6), 646–660.

Google Scholar

[20] Frisone, M. D. T.; Pinna, F.; Strukul, G. Organometallics 1993, 12 (1), 148–156.

Google Scholar

[21] Cornish, B. J. P. A.; Lawton, L. A.; Robertson, P. K. J. Appl. Catal. B: Environ. 2000, 25 (1), 59–67.

Google Scholar

[22] Aceituno, M.; Stalikas, C. D.; Lunar, L.; Rubio, S.; Pérez-Bendito, D. Water Res. 2002, 36 (14), 3582-3592.

DOI: 10.1016/s0043-1354(02)00061-1

Google Scholar

[23] Barakat, M. A.; Tseng, J. M.; Huang, C. P. Appl. Catal. B: Environ. 2005, 59 (1–2), 99–104.

Google Scholar

[24] Yu, J. C.; Kwong, T. Y.; Luo, Q.; Cai, Z. Chemosphere 2006, 65 (3), 390–399.

Google Scholar

[25] Gimeno, O.; Carbajo, M.; López, M. J.; Melero, J. A.; Beltrán, F.; Rivas, F. J. Water Res. 2007, 41 (20), 4672-4684.

DOI: 10.1016/j.watres.2007.06.042

Google Scholar

[26] Chiou, C. H.; Wu, C. Y.; Juang, R. S. Chem. Eng. J. 2008, 139 (2), 322–329.

Google Scholar

[27] Matsuzawa, S.; Tanaka, J.; Sato, S.; Ibusuki, T. J. Photochem. Photobiol. A: Chem. 2002, 149 (1-3), 183-189.

Google Scholar

[28] Adán, C.; Coronado, J. M.; Bellod, R.; Soria, J.; Yamaoka, H. Appl. Cata. A: Gen. 2006, 303 (2), 199-206.

Google Scholar

[29] Xie, H. S.; Zhu, Y. R.; Li, A. M.; Lu, L. Photograph. Sci. Photochem. 2006, 24 (4), 312–317.

Google Scholar

[30] Yang, Z. Y.; Zhou, A. N. J. China Coal Soc. 2005, 30 (6), 759–764.

Google Scholar

[31] Huffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 95 (1), 69–96.

Google Scholar

[32] Legrimi, O.; Oliveros, O.; Braun, A. M. Chem. Rev., 1993, 93 (2), 671–698.

Google Scholar

[33] Inel, Y.; Balcioglu, I. A. J. Environ. Sci. Heal. A. 1996, 31 (1), 123–128.

Google Scholar