[1]
Miura, K. M. Fuel Process. Technol. 2000, 62 (2-3), 119–135.
Google Scholar
[2]
Schobert, H. H.; Song, C. Fuel 2002, 81 (1), 15–32.
Google Scholar
[3]
Liotta, R.; Brons, G.; Isaacs, J. Fuel 1983, 62 (7), 781–791.
Google Scholar
[4]
Italy, M.; Hill, C.; Glasser, D. A. Fuel Process. Technol. 1989, 21 (2), 81–97.
Google Scholar
[5]
Li, Y. X.; Xue, B.; Liu, N.; Pradeep, K. A. Coal Conversion 2007, 30 (2), 1–5.
Google Scholar
[6]
Liu, Z. X.; Liu, Z, C.; Zong, Z. M.; Wei, X.Y.; Wang, J.; Lee, C.W. Energy Fuels 2003, 17 (2), 424–426.
Google Scholar
[7]
Takaaki, I.; Hideyuki, T.; Katsuki, K.; Shigeharu, M. Energy Fuels 1998, 12 (3), 503–511.
Google Scholar
[8]
Sevil, Ü.; Zehra, G.; Yalcin, S. P. Energy Sources 1999, 21 (2) , 269–273.
Google Scholar
[9]
Huang,Y. G.; Zong, Z. M.; Yao, Z. S.; Zheng, Y. X.; Mou, J.; Liu, G. F.; Cao, J. P.; Ding, M. J.; Cai, K. Y.; Wang, F.; Zhao, W.; Xia, Z. L.; Wu, L.; Wei, X. Y. Energy Fuels 2008, 22 (3), 1799–1806.
DOI: 10.1021/ef700589q
Google Scholar
[10]
Wertz, D. L.; Bissell, M. Fuel 1995, 74 (10), 1431–1435.
Google Scholar
[11]
Solum, M. S.; Pugamire, R. J.; Grant, D. M.; Kelemen, S. R.; Gorbaty, M. L.; Wind, R. A. Energy Fuels 1997, 11 (2), 491–494.
Google Scholar
[12]
Kelemen, S. R.; Gorbaty, M. L.; Kwiatek, P. J. Energy Fuels 1994, 8 (4), 896–906.
Google Scholar
[13]
Hayatsu, R.; Scott, R. G.; Moore, L. P.; Studier, M. H. Nature 1975, 257 (10), 378–380.
Google Scholar
[14]
Hayatsu, R.; Winnas, R. E.; Scott, R. G.; Moore, L. P.; Studier, M. H. Prepr. Pap.–Am. Chem. Soc., Div. Fuel Chem. 1977, 22 (5), 156–168.
Google Scholar
[15]
Yao, Z. S.; Wei, X. Y.; Lv, J.; Liu, F. J.; Huang, Y. G.; Xu, J. J.; Chen, F. J.; Huang, Y.; Li, Y.; Lu, Y.; Zong, Z. M. Energy Fuels 2010, 24 (3), 1801–180.
Google Scholar
[16]
Faria, A. L.; Leod, T. C. O. M.; Assis, M. D. Catal. Today 2008, 133–135, 863–869.
Google Scholar
[17]
Greggio, G.; Sgarbossa, P.; Scarso, A.; Michelin, R. A.; Strukul G. Inorg. Chim. Acta 2008, 361 (11), 3230–3236.
DOI: 10.1016/j.ica.2007.10.042
Google Scholar
[18]
Tolvanen, P.; Mäki-Arvela, P.; Sorokin, A. B.; Salmi, T.; Murzin, D. Y. Chem. Eng. J. 2009, 154 (1–3), 52–59.
Google Scholar
[19]
Michelin, R. A.; Sgarbossa, P.; Scarso, A.; Strukul, G. Coordin. Chem. Rev. 2010, 254 (5-6), 646–660.
Google Scholar
[20]
Frisone, M. D. T.; Pinna, F.; Strukul, G. Organometallics 1993, 12 (1), 148–156.
Google Scholar
[21]
Cornish, B. J. P. A.; Lawton, L. A.; Robertson, P. K. J. Appl. Catal. B: Environ. 2000, 25 (1), 59–67.
Google Scholar
[22]
Aceituno, M.; Stalikas, C. D.; Lunar, L.; Rubio, S.; Pérez-Bendito, D. Water Res. 2002, 36 (14), 3582-3592.
DOI: 10.1016/s0043-1354(02)00061-1
Google Scholar
[23]
Barakat, M. A.; Tseng, J. M.; Huang, C. P. Appl. Catal. B: Environ. 2005, 59 (1–2), 99–104.
Google Scholar
[24]
Yu, J. C.; Kwong, T. Y.; Luo, Q.; Cai, Z. Chemosphere 2006, 65 (3), 390–399.
Google Scholar
[25]
Gimeno, O.; Carbajo, M.; López, M. J.; Melero, J. A.; Beltrán, F.; Rivas, F. J. Water Res. 2007, 41 (20), 4672-4684.
DOI: 10.1016/j.watres.2007.06.042
Google Scholar
[26]
Chiou, C. H.; Wu, C. Y.; Juang, R. S. Chem. Eng. J. 2008, 139 (2), 322–329.
Google Scholar
[27]
Matsuzawa, S.; Tanaka, J.; Sato, S.; Ibusuki, T. J. Photochem. Photobiol. A: Chem. 2002, 149 (1-3), 183-189.
Google Scholar
[28]
Adán, C.; Coronado, J. M.; Bellod, R.; Soria, J.; Yamaoka, H. Appl. Cata. A: Gen. 2006, 303 (2), 199-206.
Google Scholar
[29]
Xie, H. S.; Zhu, Y. R.; Li, A. M.; Lu, L. Photograph. Sci. Photochem. 2006, 24 (4), 312–317.
Google Scholar
[30]
Yang, Z. Y.; Zhou, A. N. J. China Coal Soc. 2005, 30 (6), 759–764.
Google Scholar
[31]
Huffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 95 (1), 69–96.
Google Scholar
[32]
Legrimi, O.; Oliveros, O.; Braun, A. M. Chem. Rev., 1993, 93 (2), 671–698.
Google Scholar
[33]
Inel, Y.; Balcioglu, I. A. J. Environ. Sci. Heal. A. 1996, 31 (1), 123–128.
Google Scholar