Photocatalytic Oxidation of Shenfu Bituminous Coal and Xilinhaote Lignite with H2O2 over TiO2

Abstract:

Article Preview

Shenfu bituminous coal (SFBC) and Xilinhaote lignite (XL) were subject to photo-catalytic oxidation with hydrogen peroxide over titanium dioxide. The reaction mixtures were extracted with acetone exhaustively. The extracts were analyzed with FTIR and GC/MS. The results show that coals be oxidized selectively and degraded partially. Compared with the bituminite coal, the oxidation effect of the lignite coal with active hydrogens is more obvious. The alkyl side chains of the macromolecules, particularly, chains of methyl, methylene and aromatic, are the most vulnerable in relation to other compounds in coals. Moreover, the increasing of straight-chain alkanes and the decreasing of condensed nucleus in SFBC and XL through oxidation suggest that the oxidation is an effective method of coal utilization with no difficultly, also be friendly towards the environment after treated as well as in the process of the treatment.

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He

Pages:

1684-1689

DOI:

10.4028/www.scientific.net/AMR.233-235.1684

Citation:

H. S. Xie et al., "Photocatalytic Oxidation of Shenfu Bituminous Coal and Xilinhaote Lignite with H2O2 over TiO2", Advanced Materials Research, Vols. 233-235, pp. 1684-1689, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] Miura, K. M. Fuel Process. Technol. 2000, 62 (2-3), 119–135.

[2] Schobert, H. H.; Song, C. Fuel 2002, 81 (1), 15–32.

[3] Liotta, R.; Brons, G.; Isaacs, J. Fuel 1983, 62 (7), 781–791.

[4] Italy, M.; Hill, C.; Glasser, D. A. Fuel Process. Technol. 1989, 21 (2), 81–97.

[5] Li, Y. X.; Xue, B.; Liu, N.; Pradeep, K. A. Coal Conversion 2007, 30 (2), 1–5.

[6] Liu, Z. X.; Liu, Z, C.; Zong, Z. M.; Wei, X.Y.; Wang, J.; Lee, C.W. Energy Fuels 2003, 17 (2), 424–426.

[7] Takaaki, I.; Hideyuki, T.; Katsuki, K.; Shigeharu, M. Energy Fuels 1998, 12 (3), 503–511.

[8] Sevil, Ü.; Zehra, G.; Yalcin, S. P. Energy Sources 1999, 21 (2) , 269–273.

[9] Huang,Y. G.; Zong, Z. M.; Yao, Z. S.; Zheng, Y. X.; Mou, J.; Liu, G. F.; Cao, J. P.; Ding, M. J.; Cai, K. Y.; Wang, F.; Zhao, W.; Xia, Z. L.; Wu, L.; Wei, X. Y. Energy Fuels 2008, 22 (3), 1799–1806.

DOI: 10.1021/ef700589q

[10] Wertz, D. L.; Bissell, M. Fuel 1995, 74 (10), 1431–1435.

[11] Solum, M. S.; Pugamire, R. J.; Grant, D. M.; Kelemen, S. R.; Gorbaty, M. L.; Wind, R. A. Energy Fuels 1997, 11 (2), 491–494.

[12] Kelemen, S. R.; Gorbaty, M. L.; Kwiatek, P. J. Energy Fuels 1994, 8 (4), 896–906.

[13] Hayatsu, R.; Scott, R. G.; Moore, L. P.; Studier, M. H. Nature 1975, 257 (10), 378–380.

[14] Hayatsu, R.; Winnas, R. E.; Scott, R. G.; Moore, L. P.; Studier, M. H. Prepr. Pap. –Am. Chem. Soc., Div. Fuel Chem. 1977, 22 (5), 156–168.

[15] Yao, Z. S.; Wei, X. Y.; Lv, J.; Liu, F. J.; Huang, Y. G.; Xu, J. J.; Chen, F. J.; Huang, Y.; Li, Y.; Lu, Y.; Zong, Z. M. Energy Fuels 2010, 24 (3), 1801–180.

[16] Faria, A. L.; Leod, T. C. O. M.; Assis, M. D. Catal. Today 2008, 133–135, 863–869.

[17] Greggio, G.; Sgarbossa, P.; Scarso, A.; Michelin, R. A.; Strukul G. Inorg. Chim. Acta 2008, 361 (11), 3230–3236.

[18] Tolvanen, P.; Mäki-Arvela, P.; Sorokin, A. B.; Salmi, T.; Murzin, D. Y. Chem. Eng. J. 2009, 154 (1–3), 52–59.

[19] Michelin, R. A.; Sgarbossa, P.; Scarso, A.; Strukul, G. Coordin. Chem. Rev. 2010, 254 (5-6), 646–660.

[20] Frisone, M. D. T.; Pinna, F.; Strukul, G. Organometallics 1993, 12 (1), 148–156.

[21] Cornish, B. J. P. A.; Lawton, L. A.; Robertson, P. K. J. Appl. Catal. B: Environ. 2000, 25 (1), 59–67.

[22] Aceituno, M.; Stalikas, C. D.; Lunar, L.; Rubio, S.; Pérez-Bendito, D. Water Res. 2002, 36 (14), 3582-3592.

DOI: 10.1016/s0043-1354(02)00061-1

[23] Barakat, M. A.; Tseng, J. M.; Huang, C. P. Appl. Catal. B: Environ. 2005, 59 (1–2), 99–104.

[24] Yu, J. C.; Kwong, T. Y.; Luo, Q.; Cai, Z. Chemosphere 2006, 65 (3), 390–399.

[25] Gimeno, O.; Carbajo, M.; López, M. J.; Melero, J. A.; Beltrán, F.; Rivas, F. J. Water Res. 2007, 41 (20), 4672-4684.

[26] Chiou, C. H.; Wu, C. Y.; Juang, R. S. Chem. Eng. J. 2008, 139 (2), 322–329.

[27] Matsuzawa, S.; Tanaka, J.; Sato, S.; Ibusuki, T. J. Photochem. Photobiol. A: Chem. 2002, 149 (1-3), 183-189.

[28] Adán, C.; Coronado, J. M.; Bellod, R.; Soria, J.; Yamaoka, H. Appl. Cata. A: Gen. 2006, 303 (2), 199-206.

[29] Xie, H. S.; Zhu, Y. R.; Li, A. M.; Lu, L. Photograph. Sci. Photochem. 2006, 24 (4), 312–317.

[30] Yang, Z. Y.; Zhou, A. N. J. China Coal Soc. 2005, 30 (6), 759–764.

[31] Huffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 95 (1), 69–96.

[32] Legrimi, O.; Oliveros, O.; Braun, A. M. Chem. Rev., 1993, 93 (2), 671–698.

[33] Inel, Y.; Balcioglu, I. A. J. Environ. Sci. Heal. A. 1996, 31 (1), 123–128.

In order to see related information, you need to Login.