Fabrication of Mn2O3 Nanorods and their Different Paramagnetic Properties

Article Preview

Abstract:

Mn2O3 Nanorods have been successfully synthesized under mild conditions by hydrothermal route following by thermal treatment at different calcination temperatures. Techniques of XRD, TEM, HRTEM, ED and XPS have been used to characterize the nanorods. The magnetic properties of the Mn2O3 nanorods synthesized at different calcination temperature have been studied using electron paramagnetic resonance (EPR) technique. And the evolved different EPR signals have also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2252-2257

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. F. Shen, Steven L. Suib, Chi-Lin O'Young, J. Am. Chem. Soc. Vol.116 (1994), p.11020.

Google Scholar

[2] G. Qi, R. T. Yang, R. Chang, Catal. Lett. Vol.87 (2003), p.67.

Google Scholar

[3] J. M. Taraseon and M. Armard, Nature Vol.414 (2001), p.359.

Google Scholar

[4] E. R. Stobhe, B. A. D. Boer and J. W. Geus, Catal. Today Vol.47 (1999), p.161.

Google Scholar

[5] L. Hegedus, J. W. Beckman, W. H. Pan, J. P. Solor Eur. Appl. Ep Vol.345 (1989), p.695.

Google Scholar

[6] C. Z. Wu, Y. Xie, D. Wang, J. Yang, T. W. Li, J. Phys. Chem. B Vol.107 (2003), p.13583.

Google Scholar

[7] G. Y. Xie, L. M. Yu, B. Y. Liu. Inorg. Chem. Beijing, Vol.9 (1996), p.37.

Google Scholar

[8] Z. Y. Yuan, T. Z. Ren, G. H. Du, B. L. Su, Chem. Phys. Lett. Vol.389 (2004), p.83.

Google Scholar

[9] Z. Y. Yuan, Z. Zhang, G. Du, T. Z. Ren, B. L. Su, Chem. Phys. Lett. Vol.378 (2003), p.349.

Google Scholar

[10] Tokeer Ahmad, Kandalam V. Ramanujachary, Samuel E. Lofland, Ashok K. Ganguli, J. Mater. Chem. Vol.14 (2004), p.3406.

Google Scholar

[11] Z. W. Chen, S. Y. Zhang, S. Tan, F. Q. Li, J. Wang, S. Z. Jin, Y. H. Zhang, J. Cryst. Growth, Vol.180 (1997), p.280.

Google Scholar

[12] S. Y. Zhang, Z. W. Chen, S. Tan, J. Wang, S. Z. Jin, Nanostruct. Mater. Vol. 8 (1997), p.719.

Google Scholar

[13] Z. Gui, R. Fan, X. H. Chen, Y. C. Wu, Inorg. Chem. Commun. Vol.4 (2001), p.294.

Google Scholar

[14] W. Zhang, X. Song, D. Li, S, Sun, Chin. J. Inorg. Chem. Vol.20 (2004), p.675.

Google Scholar

[15] C. Tsang, J. Kim, A. Mathirm, J. Solid. State. Chem. Vol.137 (1998), p.28.

Google Scholar

[16] S. Ching, J. A. Landdriggan, M. L. Jorgensen, N. Duan, S. L. Suib, C. L. O'Young, Chem. Mater. Vol.7 (1995), p.1064.

Google Scholar

[17] W. L. He, Y. C. Zhang, X. X. Zhang, H. Wang, H. Yan, J. Cryst. Growth Vol.252 (2003), p.285.

Google Scholar

[18] Y. Liu, Y. Qian, Y. Zhang, M. Zhang, Z. Chen, L. Yang, C. Wang, Z. Chen, Mater. Lett. Vol.28 (1996), p.357.

Google Scholar

[19] L. Z. Wang, Yasuo Ebina, Kazunori Takada, Takayoshi Sasaki, Chem. Commun. (2004), p.1074.

Google Scholar

[20] W. L. Fan, S. X. Sun, L. P. You, G. X. Cao, X. Y. Song, W. M. Zhang, H. Y. Yu, J. Mater. Chem. Vol.13 (2003), p.3062.

Google Scholar

[21] X. G. Wen, W. X. Zhang, S, H, Yang, Z. R. Dai, Z. L. Wang, Nano. Lett. Vol.2 (2002), p.1397

Google Scholar

[22] L. Yan, J. Zhuang, X. M. Sun, Z. X. Deng, Y. D. Li, Mater. Chem. Phys. Vol.76 (2002), p.119.

Google Scholar

[23] H. W. Liu, L. B. Feng, X. S. Zhang, Q. J. Xue, J. Phys. Chem. Vol.99 (1995), p.332.

Google Scholar

[24] Y. J. Sun, Takashi Egawa, C. L. Shao, L. Y. Zhang, X. Yao, J. Cryst. Growth Vol.268 (2004), p.118.

Google Scholar

[25] Yuichi Ochiai, Ryousuke Enomoto, Satoshi Ishii, Koichirou Miyamoto, Kazunag Horiuchi, Nobuyuki Aoki, Physica B Vol.329-333 (2003), p.1542.

Google Scholar

[26] P. K. Sharma, M. S. Whittingham, Mater. Lett. Vol.48 (2001), p.319.

Google Scholar

[27] H. Zhang, et al., J. Phys. Chem. Solids Vol.61 (2000), p.1123.

Google Scholar

[28] Z. Q. Li, Y. J. Xiong, Y. Xie, Inorg. Chem. Vol.42 (2003), p.8105.

Google Scholar

[29] E. Houzé, M. Nechtschein, Phys. Rev. B Vol.53 (1996), p.14309.

Google Scholar