Comparison between Kinetic and Thermodynamic Effects on Grain Growth in Nano-Scale Materials

Article Preview

Abstract:

A detailed comparison between kinetic and thermodynamic effects on grain growth in nanocrystalline Gd doped ceria ceramics was given. From the thermodynamic standpoint, the evolution of grain size with annealing time can be described using an analytical model for grain boundary segregation upon isothermal grain growth. From the kinetic standpoint, the single isothermal grain growth can be understood in terms of a single, thermally-activated rate process with constant grain boundary energy, σb. The solute excess in grain boundaries increases with grain growth and tends to its saturated value, therefore, the inhibition of grain growth can be attributed to the reduction of grain boundary energy σb through solute segregation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2439-2442

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Suzuki, I. Kosacki, H.U. Anderson. Solid State Ionics Vol. 151 (2002), p.111.

Google Scholar

[2] J.M. Rupp, A. Infortuna, L.J. Gauckler. Acta Mater. Vol. 54 (2006), p.1721.

Google Scholar

[3] J.E. Burke. Trans. Metall. Soc. A.I.M.E. Vol. 175 (1949) p.73.

Google Scholar

[4] A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, D.T. Wu. Acta Mater. Vol. 47 (1999) p.2143.

Google Scholar

[5] E Rabkin. Scripta Mater. Vol. 42 (2000) p.1199.

Google Scholar

[6] J. Weissmüller. Nanostructured Mater. Vol. 3 (1993) p.261.

Google Scholar

[7] R. Kirchheim. Acta Mater. Vol. 50 (2002) p.413.

Google Scholar

[8] F. Liu, R. Kirchheim. J. Crystal Growth Vol. 264 (2004) p.385.

Google Scholar

[9] J.E. Burke, D. Turnbull. Prog. Met. Phys Vol. 3 (1952) p.220.

Google Scholar

[10] M. Hillert. Acta Metall. Vol. 13 (1965) p.227.

Google Scholar

[11] J.W. Gibbs. Trans. Conn. Acad. III 1876; 108.

Google Scholar

[12] Z. Chen, F. Liu, H.F. Wang, et al. Acta Mater. Vol. 57(5) (2009) p.1466.

Google Scholar

[13] X.Y. Song, J.X. Zhang, L.M. Li, K.Y. Yang, G.Q. Liu. Acta Mater. Vol. 54 (2006) p.5541.

Google Scholar

[14] V.T. Borisov, V.M. Golikov and G.V. Scherbedinskiy. Fiz. Metal. Metall. Vol. 17 (1964) p.80.

Google Scholar

[15] B. Färber, E. Cadel, A. Menand, G. Schmitz, R. Kirchheim. Acta Mater. Vol. 48 (2000) p.789.

Google Scholar

[16] G. Gottstein, L.S. Shvindlerman. Grain Boundary Migration in Metals, Thermodynamics, Kinetics, Applications, CRC Press, 1999.

DOI: 10.1201/9781420054361

Google Scholar

[17] D. Mclean. Grain Boundaries in Metals, Oxford University Press, Oxford, 1957.

Google Scholar

[18] K. Ishida. J. Alloy. Compd. Vol. 235 (1996) p.244.

Google Scholar

[19] L.C. Chen, K.L. Lou, B.P. Bewlay. In proceedings of 3rd International Conference on P/M in Aerospace, Defense and Demanding Applications--1993, 111-120, 1993.

Google Scholar

[20] L.C. Chen, F. Spaepen. J. Appl. Phys. Vol. 69 (1991) p.679.

Google Scholar

[21] C.E. Krill, H. Ehrhardt and R. Birringer. Z. Metallkd Vol. 9 (2005) p.1134.

Google Scholar