Effect of Kaolin Clay Content on the Cell Morphology and Physical Properties of Injection Molded PS Foams

Article Preview

Abstract:

The effect of kaolin content on the cell structure of PS foam and the correlation between the cell structure and the physical properties were evaluated in this work. The kaolin as a nucleating agent did facilitate the cell nucleation. The cell structures were apparently enhanced with increasing kaolin content. In addition to facilitating nucleation, the kaolin confined the motion of chain segments of the matrix polymer, which contributed to the change in cell structure by confining cell growth and cell coalescence to some extent. The foam with smaller cell size and larger cell density absorbed more energy, hence the impact strength increased remarkably with decreasing cell size and increasing cell density.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2451-2455

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Kumar: Prog. Rubber Plast. Technol. Vol. 9 (1993), p.54

Google Scholar

[2] D. Klempner and V. Sendijarevic: Handbook of Polymeric Foams and Foam Technology (Hanser, Cincinnati 2004).

Google Scholar

[3] D.V. Rosato, D.V. Rosato and M.V. Rosato: Plastic product material and process selection handbook (Elsevier, Kidlington 2004)

DOI: 10.1016/b978-185617431-2/50018-9

Google Scholar

[4] R.H. Hansen and W.M. Martin: Ind. Eng. Chem. Prod. Res. Dev. Vol. 3 (1964), p.137

Google Scholar

[5] R.H. Hansen and W.M. Martin: J. Polym. Sci. Polym. Lett. Vol. 3 (1965), p.325

Google Scholar

[6] J.S. Colton and N.P. Suh: Polym. Eng. Sci. Vol. 27 (1987), p.485

Google Scholar

[7] J.S. Colton and N.P. Suh: Polym. Eng. Sci. Vol. 27 (1987), p.493

Google Scholar

[8] H.H. Yang and C.D. Han: J. Appl. Polym. Sci. Vol. 29 (1984), p.4465

Google Scholar

[9] S.T. Lee : Polym. Eng. Sci. Vol. 33 (1993), p.418

Google Scholar

[10] S.T. Lee : J. Cell. Plast. Vol. 30 (1994), p.444

Google Scholar

[11] N.S. Ramesh, D.H. Rasmussen and G.A. Campbell: Polym. Eng. Sci. Vol. 34 (1994), p.1685

Google Scholar

[12] N.S. Ramesh, D.H. Rasmussen and G.A. Campbell: Polym. Eng. Sci. Vol. 34 (1994), p.1698

Google Scholar

[13] C. B. Park, L.K. Cheung and S.W. Song: Cell. Polym. Vol. 17 (1998), p.221

Google Scholar

[14] L. Chen, K. Blizard, R. Straff and X. Wang: J. Cell. Plast. Vol. 38 (2002), p.139

Google Scholar

[15] H.E. Naguib, C.B. Park and P.C. Lee: J. Cell. Plast. Vol. 39 (2003), p.499

Google Scholar

[16] L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu: Compos. Sci. Technol., Vol. 65 (2005), p.2344

Google Scholar

[17] W. Gong, J.C. Gao, M. Jiang, J.Yu and L. He: Int. Polym. Process. Vol. 25 (2010), p.270

Google Scholar

[18] V. Kumar and N.P. Suh: Polym. Eng. Sci. Vol. 30 (1990), p.1323

Google Scholar

[19] M. Delin and G.B. McKenna: Mech. Time-Depend. Mater. Vol. 4 (2000), p.231

Google Scholar

[20] C. Thomas, V. Ferreiro, G. Coulon and R. Seguela: Polymer Vol. 48 (2007), p.6041

Google Scholar