Effect of Kaolin Clay Content on the Cell Morphology and Physical Properties of Injection Molded PS Foams

Abstract:

Article Preview

The effect of kaolin content on the cell structure of PS foam and the correlation between the cell structure and the physical properties were evaluated in this work. The kaolin as a nucleating agent did facilitate the cell nucleation. The cell structures were apparently enhanced with increasing kaolin content. In addition to facilitating nucleation, the kaolin confined the motion of chain segments of the matrix polymer, which contributed to the change in cell structure by confining cell growth and cell coalescence to some extent. The foam with smaller cell size and larger cell density absorbed more energy, hence the impact strength increased remarkably with decreasing cell size and increasing cell density.

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He

Pages:

2451-2455

DOI:

10.4028/www.scientific.net/AMR.233-235.2451

Citation:

M. Jiang and H. Chi, "Effect of Kaolin Clay Content on the Cell Morphology and Physical Properties of Injection Molded PS Foams", Advanced Materials Research, Vols. 233-235, pp. 2451-2455, 2011

Online since:

May 2011

Authors:

Export:

Price:

$35.00

[1] V. Kumar: Prog. Rubber Plast. Technol. Vol. 9 (1993), p.54.

[2] D. Klempner and V. Sendijarevic: Handbook of Polymeric Foams and Foam Technology (Hanser, Cincinnati 2004).

[3] D.V. Rosato, D.V. Rosato and M.V. Rosato: Plastic product material and process selection handbook (Elsevier, Kidlington 2004).

DOI: 10.1016/b978-185617431-2/50006-2

[4] R.H. Hansen and W.M. Martin: Ind. Eng. Chem. Prod. Res. Dev. Vol. 3 (1964), p.137.

[5] R.H. Hansen and W.M. Martin: J. Polym. Sci. Polym. Lett. Vol. 3 (1965), p.325.

[6] J.S. Colton and N.P. Suh: Polym. Eng. Sci. Vol. 27 (1987), p.485.

[7] J.S. Colton and N.P. Suh: Polym. Eng. Sci. Vol. 27 (1987), p.493.

[8] H.H. Yang and C.D. Han: J. Appl. Polym. Sci. Vol. 29 (1984), p.4465.

[9] S.T. Lee : Polym. Eng. Sci. Vol. 33 (1993), p.418.

[10] S.T. Lee : J. Cell. Plast. Vol. 30 (1994), p.444.

[11] N.S. Ramesh, D.H. Rasmussen and G.A. Campbell: Polym. Eng. Sci. Vol. 34 (1994), p.1685.

[12] N.S. Ramesh, D.H. Rasmussen and G.A. Campbell: Polym. Eng. Sci. Vol. 34 (1994), p.1698.

[13] C. B. Park, L.K. Cheung and S.W. Song: Cell. Polym. Vol. 17 (1998), p.221.

[14] L. Chen, K. Blizard, R. Straff and X. Wang: J. Cell. Plast. Vol. 38 (2002), p.139.

[15] H.E. Naguib, C.B. Park and P.C. Lee: J. Cell. Plast. Vol. 39 (2003), p.499.

[16] L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen and G. Xu: Compos. Sci. Technol., Vol. 65 (2005), p.2344.

[17] W. Gong, J.C. Gao, M. Jiang, J. Yu and L. He: Int. Polym. Process. Vol. 25 (2010), p.270.

[18] V. Kumar and N.P. Suh: Polym. Eng. Sci. Vol. 30 (1990), p.1323.

[19] M. Delin and G.B. McKenna: Mech. Time-Depend. Mater. Vol. 4 (2000), p.231.

[20] C. Thomas, V. Ferreiro, G. Coulon and R. Seguela: Polymer Vol. 48 (2007), p.6041.

In order to see related information, you need to Login.