Copper Accumulation and Tolerance of Chlorophytum comosum

Article Preview

Abstract:

In this study, Copper (Cu) tolerance in Chlorophytum comosum was tested by pot-planting. The results showed that the tolerance index (TI) of C. comosum was above 100 in soil Cu concentration of 50mg·kg-1. With the increase of Cu concentration in soil, the MDA content increased, but had no significant differences with the control until 500mg·kg-1. The value of chlorophyll a/b had no significant differences with the control in all treatments. Meanwhile, the bioaccumulation coefficient (BC) and translocation factor (TF) value of C. comosum were 1.287 and 0.687 respectively in Cu concentration of soil up to 500mg·kg-1. For the advantages of high tolerance, high accumulation and high ornamental value, C. comosum may be a potential Cu-accumulator and have tremendous application value in the treatment of Cu-contaminated soils.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

707-711

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Lin and S. Lin: New Phytologist Vol. 116 (1990), p.531

Google Scholar

[2] A. A. Nadia, M. P. Bernal and M. Ater: Plant Soil Vol. 239 (2002), p.103

Google Scholar

[3] E. Romanowska, B. Wróblewska, A. Drozak, M. Zienkiewicz and M. Siedlecka: Plant Biology Vol. 52 (2008), p.80

Google Scholar

[4] I. V. Seregin and A. D. Kozhevnikova: Russian Journal of Plant Physiology Vol. 53 (2006), p.257

Google Scholar

[5] R. L. Chaney, M. Mailk, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle and A. J. M. Baker: Current Opinion in Biotechnology Vol. 8 (1997), p.279

Google Scholar

[6] D. E. Salt, R. D. Smith and I. Raskin: Annual Review of Plant Physiology and Plant Molecular Biology Vol. 49 (1998), p.643

Google Scholar

[7] J. Nouri, N. Khorasani, B. Lorestani, M. Karami, A. H. Hassani and N. Yousefi: Environmental Earth Sciences Vol. 59 (2009), p.315

DOI: 10.1007/s12665-009-0028-2

Google Scholar

[8] L. Hemndez-Apaolaza, A. M. Gasco, J. M. Gasco and F. Guerrero: Bioresource Technology Vol. 96 (2005), p.125

Google Scholar

[9] G. R. Rout, S. Samantaray and P. Das: Acta Agriculturae Scandinavica, Section B - Soil & Plant Science Vol. 49 (1999), p.234

DOI: 10.1080/713782026

Google Scholar

[10] M. K. P. Tanhan, M. Kruatrachue, P. Pokethitiyook and R. Chaiyarat: Chemosphere Vol. 68 (2007), p.323

DOI: 10.1016/j.chemosphere.2006.12.064

Google Scholar

[11] A. J. M. Baker, R. D. Reeves and A. S. M. Hajar: New Phytologist Vol. 127 (1994), p.61

Google Scholar

[12] M. L. Yan, L.L. Liu, H. H. Wang, Y. C. Xiang, and T. Feng: Journal of Agro-Environment Science Vol. 28 (2009), p.72

Google Scholar

[13] C. L. Yan, Y. T. Hong, S. Z. Fu, C. H. Fang, J. X. Lei and Q Shen: Acta Ecological Sinica Vol. 17 (1997), p.488

Google Scholar

[14] S. C. Sun, H. X. Wang and Q. R. Li: Acta Phytophysiologyl Sinica Vol. 11 (1985), p.113

Google Scholar

[15] S. Monni, M. Salemaa, C. White, E. Tuittila and M. Huopalainen: Environ. Pollut. Vol. 109 (2000), p.211

Google Scholar

[16] X. Hui and Y. Zhang: Pollution Control Technology Vol. 22 (2009), p.103

Google Scholar