Detection of Trace Formaldehyde Gas Based on Quartz Crystal Microbalance Sensor in Living Environment

Article Preview

Abstract:

Using four types of calixarene derivatives (RCT, PCT, MRCT, TBCA) as coating materials, quartz crystal microbalance (QCM) sensors have been examined for detection of toxic formaldehyde gas indoors. The results showed that PCT was the most efficient adsorption coating material for host-guest recognition of formaldehyde molecule, when the coating mass was 43.93 μg. The PCT based QCM sensor possessed a linear response range of 109 ~ 2721 ppm formaldehyde gas. In comparison with gas chromatography method, the QCM sensor had a recovery of 97.98~104.59 % with a good reversibility, stability and reproducibility, showing that the PCT based QCM sensor can be well used for the determination of trace formaldehyde in the living environment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

720-723

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.-F. Jiang, W.-J. Yuan and B.-Y. Zhang: J. Environ. Health Vol. 25 (2008), p.276.

Google Scholar

[2] P. Cole, H.-O. Adami, D. Trichopoulos and J. Mandel: Regul. Toxicol. Pharmacol. Vol. 58 (2010), p.161.

Google Scholar

[3] S. Kim and H.-J. Kim: Bioresour. Technol. Vol. 96 (2005), p.1457.

Google Scholar

[4] L. Chen, H. Jin, L. Wang, L. Sun, H. Xu, L. Ding, A. Yu and H. Zhang: J. Chromatogr. A, Vol. 1192 (2008), p.89.

Google Scholar

[5] I. Lavilla, N. Cabaleiro, F. Pena, I. de la Calle and C. Bendicho: Anal. Chim. Acta Vol. 674 (2010), p.59.

Google Scholar

[6] M. L. Scheepers, R. J. Meier, L. Markwort, J. M. Gelan, D. J. Vanderzande and B. J. Kip: Vib. Spectrosc. Vol. 9 (1995), p.139.

Google Scholar

[7] T. Schripp, C. Fauck and T. Salthammer: Int. J. Mass Spectrom. Vol. 289 (2010), p.170.

Google Scholar

[8] H. Bagheri, M. Ghambarian, A. Salemi and A. Es-Haghi: J. Pharm. Biomed. Anal. Vol. 50 (2009), p.287.

Google Scholar

[9] L. Bareket, A. Rephaeli, G. Berkovitch, A. Nudelman and J. Rishpon: Bioelectrochem. Vol. 77 (2010), p.94.

Google Scholar

[10] J. Wang, P. Zhang, J.-Q. Qi and P.-J. Yao: Sens. Actuators B Vol. 136 (2009), p.399.

Google Scholar

[11] S. Achmann, M. Hermann, F. Hilbrig, V. Jérôme, M. Hämmerle, R. Freitag and R. Moos: Talanta Vol. 75 (2008), p.786.

DOI: 10.1016/j.talanta.2007.12.015

Google Scholar

[12] X.-F. Wang, B. Ding, M. Sun, J.-Y. Yu and G. Sun: Sens. Actuators B Vol. 144 (2010), p.11.

Google Scholar

[13] H. Seo, S. Jung and S. Jeon: Sens. Actuators B Vol. 126 (2007), p.522.

Google Scholar

[14] Z. Cao, Y.-L. Zheng, F.-C. Gong, S. Long, P. Chen and X.-C. He: Microchem. J. Vol 86 (2007), p.71.

Google Scholar

[15] Y. Aoyama, Y. Tanaka and S. Sugahara: J. Am. Chem. Soc. Vol. 111 (1989), p.5397.

Google Scholar

[16] L.M. Tunstad, J.A. Tucker, E. Dalcanale, J. Weiser, J.A. Bryant, J.C. Sherman, R.C. Helgeson, C.B. Knobler and D.J. Cram: J. Org. Chem. Vol. 54 (1989), p.1305.

DOI: 10.1021/jo00267a015

Google Scholar