Adsorption of Phenol on Bifunctional Resin and Granular Activated Carbon Preloaded by Tannic Acid

Article Preview

Abstract:

For comparing the adsorption of Synthetic Organic Chemicals (SOC) competing with background pollutants between a bifunctional resin and a commercial granular activated carbon (GAC), tannic acid (TA) was preloaded to the two adsorbents at quantities of 60 and 120 μmol/g. As a result, decreases of micropores volume in the resin were 75.5 and 98.9%, while those in the GAC were only 19.0 and 30.0%, respectively. Preloading attenuated surface heterogeneities and phenol’s capacities of two adsorbents distinctly. But maximumly, 1.0 mole TA’s preloading on GAC could decline 9.23 mole phenol’s adsorption. Under the same condition, the resin’s capacity of phenol was only descended at 2.68 times, when 98.9% micropores have been blocked. In kinetic tests, blockages in the resin were misapprehended to be much lighter than those in the GAC by the Homogeneous Surface Diffusion Model (HSDM). One steady operation engineering at micropore volume 37.8% decline was introduced. The conflicts were explained by quite a number of resin’s functional groups in the macroporous and mesoporous region could attract enough phenol molecular rapidly, even if almost all micropores were blocked.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

765-773

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Pelekani; V. L. Snoeyink, Water Res. 33 (1999), p.1209

Google Scholar

[2] D. J. Barker; D. C. Stuckey, Water Res. 33 (1999), p.3063

Google Scholar

[3] C. Jarusutthirak; G. Amy, Water Res. 41 (2007), p.2787

Google Scholar

[4] A. Yuasa; F. S. Li; E. J. Cheong; Y. Matsui, Adsorption 11 (2005), p.243

Google Scholar

[5] Y. P. Guo; A. Yadav; T. Karanfil, Environ. Sci. Technol. 41 (2007), p.7888

Google Scholar

[6] T. Asano; F. L. Burton; H. L. Leverenz; R. Tsuchihashi; G. Tchobanoglous, Water reuse: issues, technologies and applications, (McGraw-Hill Education & Tsinghua University Press, Beijing, 2008).

Google Scholar

[7] S. Lin; R. Juang, J. Environ. Manage. 90 (2009), p.1336

Google Scholar

[8] J. Crittenden; R. Trussell; D. Hand; K. Howe; G. Tchobanoglous, Water Treatment: Principles and Design, (John Wiley & Sons, Hoboken,NJ, 2005).

Google Scholar

[9] S. D. Alexandratos; M. A. Strand; D. R. Quillen; A. J. Walder, Macromolecules 18 (1985), p.829

Google Scholar

[10] Q. X. Zhang; A. M. Li; F. Q. Liu; Z. H. Fei; B. C. Pan; C. Long; J. L. Chen, Chinese Patent ZL 01134143.2, (2003).

Google Scholar

[11] J. G. Cai; A. M. Li; H. Y. Shi; Z. H. Fei; C. Long; Q. X. Zhang, Chemosphere 61 (2005), p.502

Google Scholar

[12] Z. Y. Lu; C. Long; A. M. Li; Z. M. Jiang; W. Liu; J. L. Chen; Q. X. Zhang, Adsorpt. Sci. Technol. 23 (2005), p.235

Google Scholar

[13] J. N. Wang; A. M. Li; L. Xu; Y. Zhou, J. Hazard. Mater. 169 (2009), p.794

Google Scholar

[14] B. C. Pan; Q. X. Zhang; F. W. Meng; X. T. Li; X. Zhang; J. Z. Zheng; W. M. Zhang; B. J. Pan; J. L. Chen, Environ. Sci. Technol. 39 (2005), p.3308

Google Scholar

[15] N. Fontanals; R. Marce; F. Borrull, Current Analytical Chemistry 2 (2006), p.171

Google Scholar

[16] Y. Matsui; D. R. U. Knappe; R. Takagi, Environ. Sci. Technol. 36 (2002), p.3426

Google Scholar

[17] J. J. Pignatello; S. Kwon; Y. F. Lu, Environ. Sci. Technol. 40 (2006), p.7757

Google Scholar

[18] Y. Qiu; X. Xiao; H. Cheng; Z. Zhou; G. D. Sheng, Environ. Sci. Technol. 43 (2009), p.4973

Google Scholar

[19] L. Ding; V. L. Snoeyink; B. J. Mariñas; Z. Yue; J. Economy, Environ. Sci. Technol. 42 (2008), p.1227

Google Scholar

[20] Q. L. Li; V. L. Snoeyink; B. J. Mariaas; C. Campos, Water Res. 37 (2003), p.773

Google Scholar

[21] Z. Yu; S. Peldszus; P. M. Huck, Environ. Sci. Technol. 43 (2009), p.1467

Google Scholar

[22] M. Sanchez-Polo; J. D. Mendez-Diaz; J. Rivera-Utrilla; M. L. Bautista-Toledo; M. A. Ferro-Garcia, Journal of Chemical Technology and Biotechnology 84 (2009), p.367

Google Scholar

[23] D. Lin; B. Xing, Environ. Sci. Technol. 42 (2008), p.5917

Google Scholar

[24] C. Y. Ma; Y. L. Peng, Treatment of High Concentration & Difficult Metabolized Organic Wastewater, (Chinese Chemical Industrial Press, Beijing, 2008).

Google Scholar

[25] A. Dabrowski; P. Podkoscielny; Z. Hubicki; M. Barczak, Chemosphere 58 (2005), p.1049

Google Scholar

[26] A. M. Li; Q. X. Zhang; G. C. Zhang; J. L. Chen; Z. H. Fei; F. Q. Liu, Chemosphere 47 (2002), p.981

Google Scholar

[27] J. Kilduff; W. J. Weber in: Proc. Am. Water Works Assoc. Ann. Conf., edited by(1994)p.991.

Google Scholar

[28] D. W. Hand; J. C. Crittenden; W. E. Thacker, J. Environ. Eng.-Asce 109 (1983), p.82

Google Scholar

[29] Q. Zhang; J. Crittenden; K. Hristovski; D. Hand; P. Westerhoff, Water Res. 43 (2009), p.1859

Google Scholar

[30] Y. Z. Xue; A. M. Li; J. Fan; Q. Zhou in: 14th Chinese Functional Polymer Conference, edited by Q. X. Zhang, Guangzhou, P.R.C., (2008)p.273.

Google Scholar