Effect of Split Ratio in Determination of OCPs in Traditional Chinese Medicines Using Gas Chromatography

Article Preview

Abstract:

In this work, the effect of split ratio and the column flow in determination of OCPs in Traditional Chinese medicines are discussed in the name of heptachlor. When the split ratio is 60:1, the measured concentration is close to the actual concentration; on the contrary, they lead the measured concentration lower than the actual concentration. The column flow has not obviously effect on result. The split ratio is considered in OCPs analysis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

2798-2802

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.C. Wen, C.Y. Huang, and F.L.Lu, J. Chromatogr., 631 (1993) 241–250.

Google Scholar

[2] C. Basheer, H.K. Lee, J.P. Obbard, J. Chromatogr. A, 968 (2002) 191

Google Scholar

[3] P.M. Barriada, G.E. Concha, J. Chromatogr. A, 1008 (2003) 115–122.

Google Scholar

[4] Eline P. Meulenberg, Wim H. Mulder, Peter G. Stoks, 1995, 29 (3), p.553–561

Google Scholar

[5] Z.P. Wu, C.X. Xu, et al.J.JIANGSU AGRICULTURAL SCIENCES, 1 (2007) 198.(in Chinese)

Google Scholar

[6] E.B. Hicham, et al., J.Chemosphere, 60 (2005) 1565–1571

Google Scholar

[7] Nelson Torto, Lesego C. Mmualefe, et al. J. Chromatogr. A, 1153 (2007) 1–13

Google Scholar

[8] NI Yong-nian, Ping Qiu, Journal of Instrumental Analysis, 2(2003)22.(in Chinese)

Google Scholar

[9] Gianfranco Bocchinfuso, Claudia Mazzuca, et al., J. Microchim Acta ,163 (2008)195–202

Google Scholar

[10] Sandra R. Rissato, M´ario S. Galhianea, et al., J. Chromatogr. A, 1048 (2004) 153–159

Google Scholar

[11] Zhang Xiang, Qing Liao, Zhang Yan, et al., J. Chromatogr., 3 (2007) 380-383

Google Scholar

[12] Peter Bottomley, Paul G. Baker, J, ANALYST, 109(1984) 85

Google Scholar

[13] G. Famiglini, P. Palma, E. Pierini, Anal. Chem. 2008, 80, 3445 3449

Google Scholar

[14] S.Chusaksri, S.Sutthivaiyakit, P.Sutthivaiyakit, J, Anal Bioanal Chem (2006) 384: 1236–1245

DOI: 10.1007/s00216-005-0248-6

Google Scholar

[15] P.Zhang, et al., Bioinformatics and Biomedical Engineering, ICBBE 2008, C, The 2nd International Conference on, (2008)4113-4116

Google Scholar

[16] Q.Guo,M.Den, et al., Chinese traditional patent medicine, 11 (2008) 1624-1628 .(in Chinese)

Google Scholar

[17] A. Garrido Frenich,J. L. MarffnezVidal, et al., Chromatographia (2003), 57, 2 1 3 - 2 2 0

Google Scholar

[18] Eunha Hoh, Katerina Mastovska, et al., Journal of Chromatography A, 1145 (2007) 210–221

Google Scholar

[19] China Pharmacopoeia Committee, 2005.Chinese Pharmacopoeia. Chemical Industry Press

Google Scholar

[20] GB/T 5009.146-2003.(in Chinese) Fig. 1 Effect of split ratio on correction factor (the split ratio is from 20:1 to 200:1) Fig. 2 Effect of column flow on correction factor (column flow is from 0.5 ml/min to 3ml/min ) Fig. 3 Effect of termination temperature on OCPs Standards (320, 300, 280, 260, 250, 240, 230℃) Fig. 4 Effect of initial temperature on OCPs Standards(initial temperature (110, 200, 230℃) Fig. 5 Effect of heating rate on OCPs Standards (5, 8, 10, 15, 18, 20℃. min-1) Fig. 6 GC-FID of OCPs Standards(0.1mg/ml, 2: α-HCH , 3: γ-HCH, 4: β-HCH, 5: heptachlor, 6: δ-HCH, 7: o,p'-DDT and 8: p,p'-DDT ) Fig.7 GC-ECD of OCPs Standards (0.1μg/ml, 2: α-HCH , 3: γ-HCH, 4: β-HCH, 5: heptachlor, 6: δ-HCH, 7: o,p'-DDT and 8: p,p'-DDT ; ) Fig.1 Fig.2 Fig.3 Fig.4 Fig.5 Fig.6 Fig.7

DOI: 10.17816/psaic988-629

Google Scholar