Fabrication, Stress Relaxation Behavior and Bioactivity Evaluation of HA-316L Asymmetrical Functionally Gradient Biomaterial

Abstract:

Article Preview

HA/316L powder asymmetrical functionally gradient biomaterial (FGM) with varying 316L content at 100vol%, 80vol%, 60vol%, 40vol%, 20vol%, 0vol% throughout the thickness of the samples was successfully fabricated by hot pressing(HP) technique. The stress relaxation behavior indicates that gradient structure of the asymmetrical HA/316L FGM has prominent relaxation effect of thermal residual stress. The largest stress in the FGM is 246.13 MPa, which is belonging to tensile stress and at 316L-80vol%HA/ 316L interface. The surfaces of HA/316L FGM are covered with a layer of bone-like apatite after soaking in dynamic SBF, and the apatite increases with the increase of HA content. It reveals that HA/316L FGM with good bioactivity can be obtained with reasonable component design of gradient layers.

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He

Pages:

1049-1057

DOI:

10.4028/www.scientific.net/AMR.239-242.1049

Citation:

J. P. Zou "Fabrication, Stress Relaxation Behavior and Bioactivity Evaluation of HA-316L Asymmetrical Functionally Gradient Biomaterial", Advanced Materials Research, Vols. 239-242, pp. 1049-1057, 2011

Online since:

May 2011

Authors:

Export:

Price:

$38.00

[1] M.H. Fathi, A. Hanifi, V. Mortazavi. Journal of Materials Processing Technology, Vol. 202(2008): p.536.

[2] A. Behnamghader, N. Bagheri, B. Raissi, F. Moztarzadeh. Journal of Materials Science: Materials in Medicine, Vol. 19(2008): p.197.

[3] J. Suwanprateeb, R. Sanngam, W. Suvannapruk, T. Panyathanmaporn. Journal of Materials Science: Materials in Medicine, Vol. 20 (2009): p.1281.

[4] K.R. Mohamed, A.A. Mostafa. Materials Science and Engineering C, Vol. 28(2008): p.1087.

[5] Y. W. Fan, K. Duan, R. Z. Wang. Biomaterials, Vol. 26(2005): p.1623.

[6] S.H. Teng, E.J. Lee, C.S. Park, et al. Journal of Materials Science: Materials in Medicine, Vol. 19(2008): p.2453.

[7] M. Sato, A. Aslani, M.A. Sambito, et al. Journal of Biomedical Materials Research-Part A, Vol. 84(2008): p.265.

[8] M. Javidi, S. Javadpour, M. E. Bahrololoom, J. Ma. Materials Science and Engineering C, Vol. 28(2008): p.1509.

[9] A. Balamurugan, G. Balossier, S. Kannan, J. Michel, S. Rajeswari. Ceramics International, Vol. 33(2007): p.605.

[10] M. Okada, M. Masuda, R. Tanaka, et al. Journal of Biomedical Materials Research-Part A, Vol. 86(2008): p.589.

[11] J. Becker, R.M. Cannon, R.O. Ritchie. Engineering Fracture Mechanics, Vol. 69(2002): p.1521.

[12] C.L. Chu, J.C. Zhu, Z.D. Yin, P.H. Lin. Materials Science and Engineering A, Vol. 348(2003): p.244.

[13] T. Miyazaki, H.M. Kim, T. Kokubo, et al. Biomaterials. Vol. 23(2002): p.827.

[14] T. Kokubo, M. Hanakawa, M. Kawashita, et al. Biomaterials, 2004, Vol. 25(2004): p.4485.

[15] Q.Y. Zhang, J.Y. Chen, Y. Cao, J.M. Feng, X.D. Zhang. Journal of Sichuan University, Vol. 39(2002): p.1085.

In order to see related information, you need to Login.