A Simple Way to Prepare C-doped TiO2 with Visible Light Photocatalytic Activity

Article Preview

Abstract:

A visible-light-active C-doped TiO2 photocatalyst was prepared by a simple wet process. The XPS analysis results showed that carbon was doped into TiO2 particles and one kind of carbonate species with Ti-O-C structure was formed. The obtained sample showed obvious absorption in the 400-800 nm range in UV-vis spectra. By degrading of methyl orange (MO) solution under visible light irradiation (l>420 nm), the apparent rate constant (kapp) of S170 was about 10 times larger than that of P25. The preparation procedure of such C-doped catalyst can be easily scaled up for industrial production due to its simplicity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1175-1179

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann: Chem. Rev. 95 (1995) , p.69.

Google Scholar

[2] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen: Nature 440 (2006) , p.295.

DOI: 10.1038/440295a

Google Scholar

[3] M. A. Fox, M. T. Dulay: Chem. Rev. 93 (1993) , p.341.

Google Scholar

[4] W. J. Ren, Z. H. Ai, F. K. Jia, L. Z. Zhang, X. X. Fan, Z. G. Zou: Appl. Catal. B: Environ. 69 (2007) , p.138.

Google Scholar

[5] T. Ohno, T. Tsubota, M. Toyofuku: Catalysis Letters 98 (2004) , p.255.

Google Scholar

[6] Y. Z. Li, D. S. Hwang, N. H. Lee, S. J. Kim: Chemical Physics Letters 404 (2005) , p.25.

Google Scholar

[7] C. Chen, M. Long, H. Zeng, W. M. Cai, B. X. Zhou, J. Y. Zhang, Y. H. Wu, D. W. Ding, D. Y. Wu: Journal of Molecular Catalysis A: Chemical 314 (2009) , p.35.

Google Scholar

[8] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Science 293 (2001) , p.269.

Google Scholar

[9] G. Liu, X. W. Wang, L. Z. Wang, Z. G. Chen, F. Li, G. Q. Lu, H. M. Cheng: Journal of Colloid and Interface Science 334 (2009) , p.171.

Google Scholar

[10] A. M. Yu, G. J. Wu, F. X. Zhang, Y. L. Yang, N. J. Guan: Catta. Lett, 129 (2009) , p.507.

Google Scholar

[11] T. Umebayashi, T. S. Yamaki, S. Tanaka, K. Asai: Chem. Lett. 32 (2003) , p.330.

Google Scholar

[12] H. Akihiko, T. Hiroaki: Journal of Sol-Gel Science and Technology 22 (2001) , p.47.

Google Scholar

[13] H. Xu, Z. Zheng, L. Z. Zhang, H. L. Zhang, F. Deng: Journal of Solid State Chemistry 181 (2008) , p.2516.

Google Scholar

[14] S. J. Zhang, L. M Song: Catalysis Communications 10 (2009) , p.1725.

Google Scholar

[15] S. U. M. Khan, M. Al-Shahry, Jr. W. B. Ingler: Science 297 (2002) , p.2243.

Google Scholar

[16] H. Irie, Y. Watanabe, K. Hashimoto: Chemistry Letters 32 (2003) , p.772.

Google Scholar

[17] S. Sakthivel, H. Kisch, Angew: Chem. Int. Ed. 42 (2003) , p.4908.

Google Scholar

[18] Y. Z. Li, D. S. Hwang, N. H. Lee, N. S. J. Kim: Chem. Phys. Lett. 404 (2005) , p.25.

Google Scholar

[19] Q. Xiao, L. L. Ouyang: Chemical Engineering Journal 148 (2009) , p.248.

Google Scholar

[20] X. X. Wang, S. Meng, X. L. Zhang, H. T. Wang, W. Zhong, Q. G. Du: Chemical Physics Letters 444 (2007) , p.292.

Google Scholar

[21] D. Briggs, M.P. Seah: Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, (Wiley, New York, 1983).

Google Scholar

[22] M. Janus, B. Tryba, M. Inagaki, A. W. Morawski: Applied Catalysis B: Environmental 52 (2004) , p.61.

Google Scholar

[23] L. K. Konstantinou, T. A. Albanis: Appl. Catal. B 114 (2004) , p.1.

Google Scholar