A Stable Biomimetic Superhydrophobic CuO Surface Prepared by a Facile and Inexpensive Environmental-Friendly Method

Article Preview

Abstract:

A facile and inexpensive environmental-friendly method was developed to prepare a biomimetic superhydrophobic CuO surface with hierarchical micro- and nanostructures by the combination of a simple solid state reaction and a convenient dipping-coating method. The biomimetic CuO surface showed superhydrophobicity even for some corrosive liquids including salt solutions and acidic and basic solutions at a wide pH range from 2 to 13. Moreover, the superhydrophobic CuO surface showed high stability in ambient environment even exposed to ultraviolet light for 10 h.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1190-1194

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ma and R. M. Hill: Curr. Opin. Colloid. Interface. Sci. Vol.11 (2006), p.193

Google Scholar

[2] A. Lafuma and D. Quere: Nat. Mater. Vol.2 (2003), p.457

Google Scholar

[3] Z. Wang, C. Lopez, A. Hirsa and N. Koratkar: Appl. Phys. Lett. Vol.91 (2007), p.023105

Google Scholar

[4] W. Barthlott and C. Neinhuis: Planta Vol.202 (1997), p.1

Google Scholar

[5] Z. Guo and W. Liu: Plant Sci. Vol.172 (2007), p.1103

Google Scholar

[6] X. Gao and L. Jiang: Nature Vol.432 (2004), p.36

Google Scholar

[7] N. Vourdas, A. Tserepi and E. Gogolides: Nanotechnology Vol.18 (2007 ), p.125304

Google Scholar

[8] T. Sun, L. Feng, X. Gao and L. Jiang: Acc. Chem. Res. Vol.38 (2005), p.644

Google Scholar

[9] X. Feng and L. Jiang: Adv.Mater. Vol.18 (2006), p.3063

Google Scholar

[10] H. Y. Erbil, A. L. Demirel, Y. Avci and O.Mert: Science Vol. 299 (2003), p.1377

Google Scholar

[11] M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama and A. Takahara: Langmuir Vol.21 (2005), p.7299

Google Scholar

[12] N. Vourdas, A. Tserepi and E. Gogolides: Nanotechnology Vol.18 (2007), p.125304

Google Scholar

[13] L. Jiang, Y. Zhao and J. Zhai: Angew. Chem. Int. Ed. Vol.43 (2004), p.4338

Google Scholar

[14] J. Lim, G. Yi, J. H. Moon, C. Heo and S. Yang: Langmuir Vol.23 (2007), p.7981

Google Scholar

[15] M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li and L. Jiang: Adv. Mater. Vol.17 (2005), p. (1977)

Google Scholar

[16] E. Puukilainen, T. Rasilainen, M. Suvanto and T. A. Pakkanen: Langmuir Vol.23 (2007), p.7263

DOI: 10.1021/la063588h

Google Scholar

[17] L. Zhai, F. C. Cebeci, R. E. Cohen and M. F. Rubner: Nano. Lett. Vol.4 (2004), p.1349

Google Scholar

[18] A. Cao, L. Cao and D. Gao: Appl. Phys. Lett. Vol.91 (2007), p.034102

Google Scholar

[19] E. Burkarter, C. K. Saul, F. Thomazi, N. C. Cruz, S. M. Zanata, L. S. Roman and W. H. Schreiner: J. Phys. D: Appl. Phys. Vol.40 (2007), p.7778

DOI: 10.1088/0022-3727/40/24/027

Google Scholar

[20] J. Lee, B. He and N. A. Patankar: J. Micromech. Microeng. Vol.15 (2005), p.591

Google Scholar

[21] D. Jia, J. Yu and X. Xia: Chinese Sci. Bull. Vol.43 (1998), p.571

Google Scholar

[22] R. N. Wenzel: Ind. Eng. Chem. Vol.28 (1936), p.988

Google Scholar

[23] A. B. D. Cassie and S. Baxter: Trans. Faraday. Soc. Vol.40 (1944), p.546

Google Scholar

[24] M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang and D. Zhu: J. Phys. Chem. B. Vol.107 (2003), p.9954

Google Scholar

[25] H. Liu, L. Feng, J. Zhai, L. Jiang and D. Zhu: Langmuir Vol.20 ( 2004), p.5659

Google Scholar