Effects of Trace Elements on the Formation of Spheroidal Graphite in Ductile Iron

Article Preview

Abstract:

Spheroidal graphite was obtained by direct quenching iron melt atfter spheroidization and inoculation procedures. The morphology and the effects of trace elements on the formation of spheroidal graphite were investigated by scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy. Results indicate that all the graphite fixed by quenching, is nearly spheroidal with a diameter of approximately 20μm. In addition, the SEM image of graphite morphology confirms the screwed growth model of spheroidal graphite. The linear distribution of trace elements shows that the nucleus of spheroidal graphite consists of antimony, cerium, magnesium and sulfur element. Meanwhile, trace elements, such as antimony, cerium and magnesium, enrich around graphite nodule, which facilitates the formation of spheroidal graphite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1239-1242

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Labrecque and M. Gagné: Can. Metall. Quart., Vol. 37 (1998), p.343

Google Scholar

[2] K. F. Nilsson and V. Vokal: Mater. Sci. Eng., A, Vol. 502 (2009), p.54

Google Scholar

[3] S. Kim, S. L. Cockcroftand A. M. Omran: J. Alloys Compd., Vol. 476 (2009), p.728

Google Scholar

[4] L. Collini, G. Nicolettoand R. Konecna: Mater. Sci. Eng., A, Vol. 488 (2008), p.529

Google Scholar

[5] H. W. Hoover: AFS Trans., Vol. 94 (1986), p.601

Google Scholar

[6] J. C. Sawyer and J. F. Wallace: AFS Trans., Vol. 76 (1968), p.385

Google Scholar

[7] H. Itofuji and H. Uchikawa: AFS Trans., Vol. 98 (1990), p.429

Google Scholar

[8] P. C. Liu, T. X. Li, C. L. Liand C. R. Loper: AFS Trans., Vol. (1989), p.11

Google Scholar

[9] P. Larranaga, I. Asenjo, J. Sertucha, R. Suarez, I. Ferrerand J. Lacaze: Metall. Mater. Trans. A, Vol. 40 (2009), p.654

Google Scholar

[10] E. N. Pan and C. Y. Chen: AFS Trans., Vol. 104 (1996), p.845

Google Scholar

[11] O. Tsumura, Y. Ichinomiya, H. Narita, T. Miyamotoand T. Takenouchi: Imono, Vol. 68 (1996), p.54

Google Scholar

[12] B. H. Miao, K. M. Fang, W. Bianand G. Liu: Acta Metall. Mater., Vol. 38 (1990), p.2167

Google Scholar

[13] Y. Tatsuzawa, S. Jungand H. Nakae: Int. J. Cast Met. Res., Vol. 21 (2008), p.17

Google Scholar

[14] K. He, H. R. Daniels, A. Brown, R. Brydsonand D. V. Edmonds: Acta Metall. Mater., Vol. 55 (2007), p.2919

Google Scholar

[15] B. Miao, D. O. N. Wood, W. M. Bian, K. M. Fangand M. H. Fan: J. Mater. Sci., Vol. 29 (1994), p.255

Google Scholar

[16] D. D. Double and A. Hellawell: Acta Metall., Vol. 22 (1974), p.481

Google Scholar

[17] T. Skaland, Ø. Grongand T. Grong: Metall. Mater. Trans. A, Vol. 24 (1993), p.2321

Google Scholar