Solvothermal Synthesis of Nanostructured α-Ni(OH)2/ Mesoporous Carbon Composites for Supercapacitors

Article Preview

Abstract:

Nanostructured α-Ni(OH)2/ mesoporous carbon composites were synthesized by a facile solvothermal method using sodium dodecyle sulfate as a soft template and urea as a hydrolysis-controlling agent. The obtained products were characterized by X-ray diffraction(XRD), and scanning electron microscopy(SEM). Electrochemical properties studies were carried out using cyclic voltammetry(CV) and galvanostaitc charge/discharge method. The results exhibited that the α-Ni(OH)2/ mesoporous carbon composites single electrode had high specific capacitance in KOH electrolyte. The maximum specific capacitance of the α-Ni(OH)2/ mesoporous carbon composites single electrode was up to 2191 F/g in 6 M KOH solution at a charge-discharge current density of 4 mA/cm2, when the mass percent of mesoporous carbon was 5%. It is suggested its potential application in the electrode material for supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1227-1230

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Conway: J. Electrochem. Soc. Vol. 138 (1991), p.1539

Google Scholar

[2] J.P. Zheng and T.R. Jow: J. Power Sources Vol. 62 (1996), p.155

Google Scholar

[3] J.H. Jang, S.J. Han, T.W. Hyon and S.M. Oh: J. Power Sources Vol. 123 (2003), p.79

Google Scholar

[4] C. Lin, X. Feng, Y.L. Yan and L.H. Lin: Adv. Mater. Vol. 20 (2004), p.1853

Google Scholar

[5] B. E. Conway: Electrochemical Supercapacitors (Plenum Press, New York 1999)

Google Scholar

[6] M. Toupin, D. Belanger and I.R. Hill: J. Power Sources Vol. 140 (2005), p.203

Google Scholar

[7] A. Braun, M. Bartsch, B. Schnyder, R. Kotz, O. Haas, H.G. Haubold and G. Goerigk: J. Non-Cryst. Solids Vol. 260 (1999), p.1

Google Scholar

[8] N. Yoshizawa, H. Hatori, Y. Soneda, Y. Hanzawa, K. Kaneko and M.S. Dresselhaus: J. Non-Cryst. Solids Vol. 330 (2003), p.99

DOI: 10.1016/j.jnoncrysol.2003.08.041

Google Scholar

[9] C.C. Hu, W.Y. Li and J.Y. Lin: J. Power Sources Vol. 137 (2004), p.152

Google Scholar

[10] C. Sivakumar, J.N. Nian and H. Teng: J. Power Sources Vol. 144 (2005), p.295

Google Scholar

[11] J.H. Chen, W.Z. Li, D.Z. Wang, S.X. Yang, J.G. Wen and Z.F. Ren: Carbon Vol. 40 (2002), p.1193

Google Scholar

[12] Q.F. Xiao and X. Zhou: Electrochim. Acta Vol. 48 (2003), p.575

Google Scholar

[13] J. Lee, S. Han and T. Hyeon: J. Mater. Chem. Vol. 14 (2004), p.478

Google Scholar

[14] S. jun, S.H. Joo, M. Kruk, M. Jaroniec, Z. Liu and T. Ohsuna: J. Am. Chem. Soc. Vol. 122 (2000), pp.10712-10713

DOI: 10.1021/ja002261e

Google Scholar

[15] L. Cao, L.B. Kong, Y.Y. Liang and H.L. Li: Chem. Commun. 14 (2004), p.1646

Google Scholar