Counter-Ion Induced Morphological Control of Polypyrrole/Fe3O4 Nanocomposites in the Presence of Surfactant CTAB

Article Preview

Abstract:

We report a facile and novel route to in-situ growth of conducting polypyrrole (PPy)/Fe3O4 nanocomposites via a counter-ion induced method, in which the cationic surfactant CTAB was used as a soft template, ammonium persulfate (APS) or FeCl3 was used as an oxidant, and organic acids were used as a configuration “directing” agent. The as-synthesized nanocomposites were characterized by TEM, XRD and the measurements of their electromagnetic properties. Experimental results show that both the kind of oxidant and the size of counter-ions in the polymerization system play the key roles in the fabrication of the morphologies of the final PPy/Fe3O4 nanocomposites. A uniform core-shell spherical nanostructure was formed when FeCl3 was used as the oxidant, whereas the string-bead nanostructure could be obtained when APS was used instead. The size of the counter-ions during the connection of micellar molecules could directly induce the formation of the PPy/Fe3O4 composites with various morphologies from spherical nanoparticles, nanofibers or string-bead nano-network to microtube structures. Meanwhile the loading amount of Fe3O4 ferrofluid would not only determine the diameter size of the string-bead nanostructures, but also the electromagnetic properties such as the microwave absorbing capacity of the resulting nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1552-1557

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Gangopadhyay, A. De: Chem. Mater. Vol. 12(2000), P. 608

Google Scholar

[2] Z. Zhang, M. Wan, Y. Wei: Nanotechnology Vol. 16(2005), P. 2827

Google Scholar

[3] S. C. Wuang, K. G. Neoh, E. T. Kang, D. W. Pack, D. E. Leckband: J. Mater. Chem. Vol. 17 (2007) , P. 3354

Google Scholar

[4] P. Xu, X. Han, J. Jiang, X. Wang, X. Li, A. Wen: J. Phys. Chem. C. Vol. 111(2007) , P. 12603

Google Scholar

[5] S. C. Luo, S. S. Liour, S. Gao, J. Y. Ying, H. Yu: Chem. Commun. Vol. 19(2009) , P. 2664

Google Scholar

[6] Q. Cheng, Y. He, V. Pavlinek, C. Li, P. Saha: Synth. Met. Vol. 158(2008), P. 953

Google Scholar

[7] K. Sunderland, P. Brunetti, L. Spinu, J. Fang, Z. Wang, W. Lu: Mater. Lett. Vol. 58(2004), P. 3136

Google Scholar

[8] R. Bashyam, P. Zelenay: Nature Vol. 443(2006), P. 63

Google Scholar

[9] V. T. Truong, and S. Z. Riddell, R. F. Muscat: J. Mater. Sci. Vol. 33 (1998), P. 4971

Google Scholar

[10] R. Wadhwa, C. F. Lagenaur, X. T. Cui: J. Controlled Release Vol. 110 (2006), P. 531

Google Scholar

[11] K. Gurunathan, A. V. Murugan, R. Marimuthu, U. P. Mulik, D. P. Amalnerkar: Mater. Chem. Phys. Vol. 61(1999), P. 173

Google Scholar

[12] V. Saxena, B. D. Malhotra: Curr. Appl. Phys. Vol. 3 (2003), P. 293

Google Scholar

[13] X. Zhang, S. K. Manohar: J. Am. Chem. Soc. Vol. 126 (2004), P. 12714

Google Scholar

[14] A. Wu, H. Kolla, S. T. Manohar: Macromolecules Vol. 38 (2005), P. 7873

Google Scholar

[15] W. B. Zhong, S. M. Liu, X. H. Chen, Y. X. Wang, W. T. Yang: Macromolecules Vol. 39 (2006) , P. 3224

Google Scholar

[16] K. Ramanathan, M. A. Bangar, M. Yun, W. Chen, A. Mulchandani, N. V. Myung: Nano. Lett. Vol. 4(2004), P. 1237

DOI: 10.1021/nl049477p

Google Scholar

[17] X. Zhang, S. K. Manohar: J. Am. Chem. Soc. Vol. 127 (2005) , P. 14156

Google Scholar

[18] X. T. Yang, L. G. Xu, N. S. Choon, C. S. O. Hardy: Nanotechnology Vol. 14 (2003), P. 624

Google Scholar

[19] A. H. Chen, H. Q. Wang, B. Zhao, X. Y. Li: Synth. Met. Vol. 139(2003), P. 411

Google Scholar

[20] S. Jing, S. Xing, L. Yu, C. Zhao: Mater. Lett. Vol. 61(2007),P. 4528

Google Scholar

[21] D. M. Cheng, H. B. Xia, H. S. O. Chan: Langmuir Vol. 20 (2004), P. 9909

Google Scholar

[22] X. Li, M. X. Wan, Y. Wei, J. Y. Shen, Z. J. Chen: J. Phys. Chem. B. Vol. 110 (2006), P. 14623

Google Scholar

[23] N. Murillo, E. Ochoteco, Y. Alesanco, J. A. Pomposo, J. Rodriguez: Nanotechnology Vol. 15 (2004), P. S322

Google Scholar

[24] H. Guo, H. Zhu, H. Lin, J. Zhang: Mater. Lett. Vol. 62 (2008), P. 2200

Google Scholar

[25] W. Zhong, S. Liu, X. Chen, Y. Wang, W. Yang: Macromolecules Vol. 39 (2006), P. 3224

Google Scholar

[26] Y. Yang, J. Liu, M. Wan: Nanotechnology Vol. 13 (2002), P. 771

Google Scholar

[27] J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chan: Polymer Vol. 42 (2002) , P. 2179

Google Scholar

[28] Y. C. Chang, D. H. Chen: J. Colloid Interface Sci. Vol. 283 (2005), P. 446

Google Scholar

[29] J. Huo, L. Wang, H. Yu: J. Mater. Sci. Vol. 44 (2009), P. 3917

Google Scholar

[30] C. Yang, H. Li, D. Xiong, Z. Cao: React. Funct. Polym. Vol. 69 (2009), P. 137

Google Scholar