Influence of Annealing Temperature on Microstructure and Magnetic Properties of Ti/Ni/Ti Thin Films

Article Preview

Abstract:

Ti(3nm)/Ni(10nm)/Ti(3nm) films were deposited directly on glass substrates using dc facing-target magnetron sputtering system at room temperature and in situ-annealed from room temperature(RT) to annealing temperature(Ta) 500°C, respectively. At Ta = 400°C, the gain size was about 15 nm, and the magnetic domains of the films distributed homogenously, and the magnetic domain cluster size was nearly 25 nm. The maximum perpendicular coercivity of Ti(3nm)/Ni(10nm)/Ti(3nm) films was 1360 Oe. The segregation or diffusion of Ti and the stress anisotropy played important roles to increase the coercivity. The intergrain interaction of films was obtained by δM plots. In annealing films, X-ray diffraction (XRD) profiles showed two diffraction peaks of NiTi monoclinic structure (002), (111) lattice orientations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1699-1702

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Jung, S. H. Lim, and S. R. Lee: J. Appl. Phys. Vol 108 (2010), p.113902.

Google Scholar

[2] R. Niemann1, O. Heczko, L. Schultz, and S. Fähler: Appl. Phys. Lett. Vol 97 (2010), p.222507.

Google Scholar

[3] Senoy Thomas, S H Al-Harthi, D Sakthikumar, I A Al-Omari,R V Ramanujan, Yasuhiko Yoshida and M R Anantharaman: J. Phys. D: Appl. Phys. Vol 41 (2008) p.155009.

DOI: 10.1088/0022-3727/41/15/155009

Google Scholar

[4] H. Y. Sun, J. L. Xu, S. Z. Feng, Z. F. Su, J. Hu: Appl. Phys. Lett. Vol 88 (2006), p.192501.

Google Scholar

[5] Maletta C, Falvo A, Furgiuele F,and Reddy J N: Smart Mater. Struct., Vol 18 (2009), p.025005.

DOI: 10.1088/0964-1726/18/2/025005

Google Scholar

[6] Rao J, Roberts T, Lawson K, Nicholls J: Surface and Coatings Technology, Vol 204 (2010), p.2331.

Google Scholar

[7] Wang X., Vlassak J J: Scripta Materialia, Vol 54 (2006), p.925.

Google Scholar

[8] Zhang Lei, Xie Chaoying, Wu Jiansheng: Scripta Materialia, Vol 55 (2006), p.609.

Google Scholar

[9] Xu Huang, A G Ramirez: Appl. Phys. Lett., Vol 95 (2009), p.121911.

Google Scholar

[10] J. Zhang, Y. F. Xu, J. P. Wang, C K Pock, R. Ji, T. C. Chong: IEEE Trans. Magn., Vol 37 (2001), p.1849.

Google Scholar

[11] C. J. Sun, G. M. Chow, J. P. Wang, E W Soo, D Y Noh, J H Je, Y K Hwu: Nucl. Instrnm. Methods Phys. Res. Sent. B, Vol 199 (2003) p.156.

Google Scholar