Preparation, Characterization and Application in Electromagnetic Wave Absorption of Core-Shell C/Fe3O4 Nanocomposites

Article Preview

Abstract:

Large-quantity core-shell carbon spheres/Fe3O4 nanocomposites were synthesized via a simple solution method. The phase structures and morphologies of the composite had been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the carbon spheres were covered by a layer of Fe3O4 nanoparticles with a diameter of about 25 nm. Measurements of the electromagnetic parameters of the samples showed that microwave absorption properties of the carbon sphere-Fe3O4 nanocomposites were much better than that of the pure Fe3O4 or the mixtures of carbon spheres and Fe3O4 microspheres. The optimal reflection loss (RL) reached −37.8 dB at 14.8 GHz for a layer thickness of 2.0 mm, which is favorable for application of our samples in a wide frequency range.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1725-1730

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.D. Liu, Y.P. Duan, S.H. Liu, L.Y. Chen and J.B. Guo: J. Magn. Magn. Mater. Vol. 322 (2010), p.1736.

Google Scholar

[2] M. Terada, M. Itoh, J.R. Liu and K.I. Machida: J. Magn. Magn. Mater. Vol. 321 (2009), p.1209.

Google Scholar

[3] Y.L. Cheng, J.M. Dai, X.B. Zhu, D.J. Wu, Z.R. Yang and Y.P. Sun: Nanoscale Res. Lett. Vol. 4, (2009), p.1153.

Google Scholar

[4] Y.L. Cheng, J.M. Dai, D.J. Wu, and Y.P. Sun: J. Magn. Magn. Mater.Vol. 322, (2010), p.97.

Google Scholar

[5] X.G. Liu, D.Y. Geng and Z.D. Zhang: Appl. Phys. Lett. Vol. 92 (2008) p.243110.

Google Scholar

[6] P. Annadurai, A. K. Mallick, D. K. Tripathy: J. Appl. Polym. Sci. Vol. 83, (2002), p.145.

Google Scholar

[7] Y. Z. Fan, H. B. Yang, M. H. Li, G. T. Zou: Mater. Chem. Phys. Vol. 115 (2009), p.696.

Google Scholar

[8] X.S.Qi, Y. Deng, W. Zhong, Y. Yang, C. Qin, C. T. Au and Y.W. Du: J. Phys. Chem. C Vol.114 (2010) p.808.

Google Scholar

[9] X.G. Liu, Z.Q. Ou, D.Y. Geng Z. Han, J.J. Jiang, W. Liu and Z.D. Zhang: Carbon, Vol. 48 (2010), p.891.

Google Scholar

[10] J.H. Zhou, J.P. He, G.X. Li, T. Wang, D. Sun, X.C. Ding, J.Q. Zhao and S.C. Wu: J. Phys. Chem. C Vol.114 (2010), p.7611.

Google Scholar

[11] T.N. Narayanan, V. Sunny, M.M. Shaijumon, P.M. Ajayan and M.R. Anantharaman: Electrochem. Solid-State Lett. Vol. 12 (2009), p. K21.

DOI: 10.1149/1.3065992

Google Scholar

[12] K. Jia, R. Zhao, J.C. Zhong and X.B. Liu: J. Magn. Magn. Mater. Vol. 322,(2010), p.2167.

Google Scholar

[13] C.W. Qiang, J.C. Xu, Z.Q. Zhang, L.L. Tian, S. T. Xiao, Y. Liu and P. Xu: J. Appl. Phys. Vol. 506, (2010), p.93.

Google Scholar

[14] S.B. Ni, X.H. Wang, G. Zhou, F. Yang J.M. Wang and D.Y. He: J. Appl. Phys.Vol. 489 (2010), p.252.

Google Scholar

[15] X. M. Sun, Y.D. Li: Angew. Chem. Int. Ed. Vol. 43 (2004), p.43.

Google Scholar

[16] S. Jia, F. Luo, Y.C. Qing, W.C. Zhou and D.M. Zhu: Physica B. Vol. 405 (2010), p.3611.

Google Scholar

[17] C. Kittel: Phys. Rev. Vol. 73 (1948), p.155.

Google Scholar

[18] Y. Naito and K. Suetake: Trans. IEEE. Microwave Theory Tech. Vol. 19, (1971), p.65.

Google Scholar