Electrochemical Migration and Rapid Whisker Growth of Zn and Bi Dopings in Sn-3.0Ag-0.5Cu Solder in 3wt.% NaCl Solution

Article Preview

Abstract:

Electrochemical migration (ECM) tests and rapid whisker growth on Sn-3.0Ag-0.5Cu solder candidates doped with Zn and Bi on Cu-plated FR-4 printed circuit board were conducted by applying constant voltage. The results showed that dendritic shape were different when the doped metals were different. When Zn was doped in SAC solder, dendrites looked like tree trunk, while that of Bi doping looked like rose, which was due to the different composition of SAC candidates. Comparing the length of dendrites at the same condition, it could be concluded that dendrite growth might be suppressed by Bi addition, which the contrary effect suitable to Zn addition. EDAX results showed that the main content on dendrites was Sn with or without Bi doping, while the main content was Zn, Sn, and Ag with Zn doping and Zn/Bi dopings. Whisker growth test verified that Sn accounted for a majority (larger than 95wt.%), no difference could be seen on whiskers of SAC solder candidates although the contents of SAC solder candidate were differently. The whisker growth rate were not different although the doped metals were different largely. Both dendrite growth and rapid whisker growth of SAC solder candidates doped with Zn and Bi were harmful to micro/nanoelectronic packaging attributing to bridge short circuit in PWBs industries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1751-1760

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] [1] Directive 2002/95/EC of 27 January 2003, Official Journal of the European Union, 13.2.2003, L. 37/19.

Google Scholar

[2] P.L. Albert, Whisker Technology, John Wiley, New York, 1970, p.1–12.

Google Scholar

[3] W.C. Ellis, D.F. Gibbons, R.C. Treuting, in: R.H. Doremus, B.W. Roberts, D. Turnbull (Eds.), Growth of MetalWhiskers from the Solid, Growth and Perfection of Crystals, John Wiley & Sons, New York, 1958, p.102–120.

DOI: 10.1016/0160-9327(59)90066-3

Google Scholar

[4] H.L. Cobb, Monthly Rev. Am. Electroplaters Soc. 33 (28) (1946) 28.

Google Scholar

[5] K.G. Compton, A. Mendizza, S.M. Arnold, Corrosion 7 (1951) 327.

Google Scholar

[6] J.D. Eshelby, Phys. Rev. 91 (1953) 755.

Google Scholar

[7] U. Lindborg, Acta Metall. 24 (1976) 181.

Google Scholar

[8] K.N. Tu, Acta Metall. 21 (4) (1973) 347.

Google Scholar

[9] E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, K.S. Kumar, Appl. Phys. Lett. 92 (2008) 171901.

Google Scholar

[10] U. Lindborg, Metall. Trans. 6A (1975) 1581.

Google Scholar

[11] H.L. Reynolds, R. Hilty, Presented at the IPC/JEDEC Lead Free North America Conference, December 3, Boston, MA, 2004.

Google Scholar

[12] I.A. Blech, E.S. Meieran, J. Appl. Phys. 40 (2) (1969) 485.

Google Scholar

[13] M.W. Barsoum, E.N. Hoffman, R.D. Doherty, S. Gupta, A. Zavaliangos, Phys. Rev. Lett. 93 (20) (2004) 206104-1.

Google Scholar

[14] M. Murakami, T.S. Kuan, Thermal strain in lead thin films V: strain relaxation above room temperature, Thin Solid Films 66 (1980) 381.

DOI: 10.1016/0040-6090(80)90391-0

Google Scholar

[15] http://www.fda.gov/ora/inspect ref/itg/itg42.html.

Google Scholar

[16] Nordwall B, Air Force Links Radar Problems to Growth of TinWhisker, Aviation Week and Space Technology, June 20, 1986, p.65–70.

Google Scholar

[17] http://www.sat-index.com/failures.

Google Scholar

[18] R.M. Fisher, L.S. Darken, K.G. Carroll, Acta Metall. 2 (3) (1954) 368.

Google Scholar

[19] K.N. Tu, Phys. Rev. B. 49 (3) (1994) 2030.

Google Scholar

[20] B.Z. Lee, D.N. Lee, Acta Metall. 46 (10) (1998) 3701.

Google Scholar

[21] W.J. Choi, T.Y. Lee, K.N. Tu, N. Tamura, R.S. Celestre, A.A. McDowell, Y.Y. Bong, N. Liu, Acta Mater. 51 (20) (2003) 6253.

Google Scholar

[22] B. Jiang, A.P. Xian, Philos. Mag. Lett. 86 (8) (2006) 521.

Google Scholar

[23] B. Jiang, A.P. Xian, Philos. Mag. Lett. 87 (9) (2007) 657.

Google Scholar

[24] T.H. Chuang, S.F. Yen, Mater. Sci. Forum 539–543 (2007) 4019.

Google Scholar

[25] T.H. Chuang, S.F. Yen, J. Electron. Mater. 35 (8) (2006) 1621.

Google Scholar

[26] Agata Skwarek, Krzysztof Witek, Jacek Ratajczak, Risk of whiskers formation on the surface of commercially available tin-rich alloys under thermal shocks, Microelectronics reliability 49 (2009): 569-572.

DOI: 10.1016/j.microrel.2009.02.026

Google Scholar

[27] IPC-TM-650. Test methods manual, section 2.6 environmental test methods, 2.6.14.1 electrochemical migration resistance test, electrochemical migration test group.

DOI: 10.3403/02776204

Google Scholar

[28] Dominkovics Cs, Harsanyi G. Effects of flux residues on surface insulation resistance and electrochemical migration. In: Proceedings of 29th international spring seminar on electronics technology, May 10-14, St. Marienthal, Germany, 2006: 217-222.

DOI: 10.1109/isse.2006.365387

Google Scholar

[29] Huang J. F., Vongehr S., Tang S. C., et al. Ag-dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity, Langmuir, 2009, 25(19): 11890-11896.

DOI: 10.1021/la9015383

Google Scholar

[30] M. Abtew and G. Selvaduray, Mater. Sci. Eng. R. 27, 95 (2000)

Google Scholar

[31] K.N. Tu and K. Zeng. Mater. Sci. Eng. R. 34, 1 (2001)

Google Scholar

[32] D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, J.K.L. Lai, J. Mater. Res. 20, 2205 (2005)

Google Scholar

[33] T. Takemoto, R.M. Latanision, T.W. Eagar and A.Matsunawa, Corrosion Science, 39, 1415 (1997).

DOI: 10.1016/s0010-938x(97)00038-3

Google Scholar

[34] G. Harsanyi, IEEE Trans Comp., Packag., Manufact. Technol. A,18, 602 (1995)

Google Scholar

[35] G. Harsanyi, Microelectronics Reliability 39 , 1407 (1999).

Google Scholar

[36] J.A. Jachim, G.B. Freeman, L.J. Turbini, IEEE Trans Comp.,Packag., Manufact. Technol. B 20, 443 (1997).

Google Scholar

[37] R.C. Benson, B.M. Romenesko, J.A. Weiner, B.H. Nall, H.K. Jr Charles, IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-10, 363 (1988).

DOI: 10.1109/33.16669

Google Scholar

[38] D. Rocak, K. Bukat, M. Zupan, J. Fajfar-Plut, V. Tadic, Microelectronics Journal 30, 887 (1999).

Google Scholar

[39] Dominkovics C., Harsanyi G., Fractal description of dendrite growth during electrochemical migration, Microelectronics Reliability 48, 2008: 1628-1634.

DOI: 10.1016/j.microrel.2008.06.010

Google Scholar

[40] Zhang X. J., Wang G. F., Liu X. W., et al. Copper dendrites: synthesis, mechanism discussion, and application in determination of L-Tyrosine, Crystal Growth and Design, 2008, 8(4): 1430-1434.

DOI: 10.1021/cg7011028

Google Scholar

[41] C. Xu, Y. Zhang, C. Fan, J.A. Abys, IEEE Trans. Electron. Packag.Manuf. 28 (2005) 31.

Google Scholar

[42] Y. Fukuda, M. Osterman, M. Pecht, Microelectron. Reliab. 47 (2007) 88.

Google Scholar

[43] P. Su, J. Howell, S. Chopin, IEEE Trans. Electron. Packag. Manuf. 29 (2006) 246.

Google Scholar

[44] Y. Nakadaira, S. Jeong, J. Shim, J. Seo, S. Min, T. Cho, S. Kang, S. Oh, Microelectron. Reliab. 48 (2008) 83.

Google Scholar

[45] J.W. Osenbach, R.L. Shook, B.T. Vaccaro, B.D. Potteiger, A.N. Amin, K.N. Hooghan, P. Suratkar, P. Ruengsinsub, IEEE Trans. Electron. Packag. Manuf. 28 (2005) 36.

DOI: 10.1109/tepm.2005.847438

Google Scholar

[46] V. Schroeder, P. Bush, M. Williams, N. Vo, H.L. Reynolds, IEEE Trans. Electron. Packag. Manuf. 29 (2006) 231.

Google Scholar

[47] J.H. Lau, S.H. Pan, C. Xu, Proc of IEEE-ECTC, 2003, p.692.

Google Scholar

[48] S.-W. Han, K.-S. Kim, C.-H. Yu, M. Osterman, M. Pecht, Proc. of IEEE-ECTC, , 2008, p.1484.

Google Scholar

[49] Dominkovics C., Harsanyi G., Fractal description of dendrite growth during electrochemical migration, Microelectronics Reliability 48, 2008: 1628-1634.

DOI: 10.1016/j.microrel.2008.06.010

Google Scholar

[50] Kim K. S., Yu C. H., Yang J. M. Tin whisker formation of lead-free plated leadframes. Microelectronic Reliability 46, 2006: 1080-1086.

DOI: 10.1016/j.microrel.2005.08.007

Google Scholar