The Relationship between the Initial Gas Ratios and the Condensed Phase Composition in the CVD of BxC with BCl3-CH4-H2 Precursors

Article Preview

Abstract:

For the preparation of the self-healing phase BxC with BCl3-CH4-H2 precursors, the production has been examined as a function of the initial gas ratios of BCl3/(BCl3+CH4) and H2/(BCl3+CH4) at given temperature and pressure. The results show that the composition of the condensed phase is quite sensitive to the molar ratio of BCl3/(BCl3+CH4) and H2/(BCl3+CH4). The ideal condition for the deposition of BxC is that the ratio of BCl3/(BCl3+CH4) is 0.8 and the H2/(BCl3+CH4) ratio ranges from 10 to 105.2. The carbon or boron-rich material is mainly controlled by the ratios of BCl3/(BCl3+CH4) and H2/(BCl3+CH4). The deposition condition of carbon-rich phase should be in low BCl3/(BCl3+CH4) (0.0~0.8) and H2/(BCl3+CH4) (10-2<102) ratios, whereas that of the boron-rich phase needs high BCl3/(BCl3+CH4) (0.8~1.0) and H2/(BCl3+CH4) (104~105) ratios.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

1761-1765

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Naslain, Compos. Sci. Technol. 64 (2004) 155-170.

Google Scholar

[2] V. Raman, G. Bhatia, A. Mishra, P.R. Sengupta, M. Saha, Rashmi, Mater. Sci. Eng. A 412 (2005) 31-36

Google Scholar

[3] L. Quemard, F. Rebillat, A. Guette, H. Tawil , C. Louchet-Pouillerie, J. Eur. Ceram. Soc. 27 (2007) 2085-2094

DOI: 10.1016/j.jeurceramsoc.2006.06.007

Google Scholar

[4] R. Naslain, A. Guette, F. Rebillat, R. Pailler, F. Langlais, X. Bourrat, J. Sol. St. Chem. 177 (2004) 449-456.

DOI: 10.1016/j.jssc.2003.03.005

Google Scholar

[5] B.Z. Dacic, V. Jokanović, B. Jokanović, M.D. Dramićanin, J. Alloys Compd. 413 (2006) 198-205

DOI: 10.1016/j.jallcom.2005.03.117

Google Scholar

[6] S. Goujard, L. Vandenbulcke, J. Mater. Sci. 29 (1994) 6212-6220

Google Scholar

[7] Y.S. Liu, L.F. Cheng, L.T. Zhang, S.J.Wu, D. Li, Y.D. Xu, Mater. Sci. Eng. A 466 (2007) 172-177

Google Scholar

[8] S.J.Wu, L.F. Cheng W.B. Yang, Y.S. Liu, L.T. Zhang, Y.D. Xu, Appl. Compos. Mater. 13 (2006) 397-406

Google Scholar

[9] S. Goujard, L. Vandenbulcke, Thin Solid Films 245 (1994) 86-97

Google Scholar

[10] S. Goujard, L. Vandenbulcke, H. Tawil, Thin Solid Films 252 (1994) 120-130

DOI: 10.1016/0040-6090(94)90783-8

Google Scholar

[11] Cermignani, W, Paulson, TE, Onneby, C, Pantano, CG, Carbon 33 (4) (1995) 367-374

DOI: 10.1016/0008-6223(94)00160-2

Google Scholar

[12] Way, BM, Dahn, JR, Tiedje, T, Myrtle, K, Kasrai, M, Phys. Rev. B: Condens. Matter, 46 (3) (1992) 1697-1702

Google Scholar

[13] K.W. Lee, S.J. Harris, Diamond Relat. Mater. 7 (10) (1998) 1539-1543

Google Scholar

[14] U. Jansson, J.O. Carlsson, B. Stridh, S. Soederberg, M. Olsson, Thin Solid Films 172 (1) (1989) 81-93

DOI: 10.1016/0040-6090(89)90120-x

Google Scholar

[15] J.C. Oliveira, O. Conde, Thin Solid Films 307 (1-2) (1997) 29-33

Google Scholar

[16] S. Veprěk, S. Rambert, M. Heintze, F. Mattenberger, M. Jurčik-Rajman, W. Portmann, D. Ringer, U. Stiefel, J. Nucl. Mater. 162-164 (1989) 724-731

DOI: 10.1016/0022-3115(89)90353-x

Google Scholar

[17] H. Küenzli, P. Gartenbein, R. Steiner, P. Oelhafen, J. Nucl. Mater. 196-198 (1992) 622-626

Google Scholar

[18] V. Cholet, R. Herbin, L. Vandenbulcke, Thin Solid Films 188 (1) (1990) 143-155

DOI: 10.1016/0040-6090(90)90200-w

Google Scholar

[19] M.J. Santos, A.J. Silvestre, O. Conde, Surface Coat. Technol. 151-152 (2002) 160-164

Google Scholar

[20] Yongsheng Liu, Laifei Cheng, Litong Zhang, Wenbin Yang, and Yongdong Xu. Int. J. Appl. Ceram. Technol. 5 (2008) 305-312.

Google Scholar

[21] Yongsheng Liu, Litong Zhang, Laifei Cheng, Qingfeng Zeng, Weihua Zhang, Wenbin Yang, Zude Feng, Siwei Li, Bin Zeng. Appl. Surf. Sci. 255 (2009) 5729-5735.

Google Scholar

[22] Yongsheng Liu, Litong Zhang, Laifei Cheng, Ceram. Mater. Compt. Energy Environ. Appl. (2010) 379-386.

Google Scholar

[23] Y. Zeng, K.H. Su, J.L. Deng, T. Wang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, L.T. Zhang, J. Mol. Struct. THEOCHEM 861 (2008) 103.

Google Scholar

[24] Y.Sh. Liu, Ph. D. Thesis, Northwestern Polytechnical University, 2008.

Google Scholar

[25] J. REY, G. MALE, Ph. KAPSA, J. L . LOUBET. J. DE Physique 50 (1989) C5-311-321

DOI: 10.1051/jphyscol:1989538

Google Scholar

[26] Mustafa Karaman, N. Aslı Sezgi, Timur Dogŭ et al, AIChE J. 52 (2006) 4161-4166

Google Scholar

[27] J. Berjonneau, G. Chollon, F. Langlais, J. Electrochem. Soc. 153 (2006) C795-C800.

Google Scholar

[28] J. Berjonneau, F. Langlais, G. Chollon, Surface Coat. Technol. 201 (2007) 7273-7285

Google Scholar

[29] M. Ducarrior, C. Bernard, J. Electrochem. Soc. (1976) 136-140

Google Scholar

[30] Lionel G. Vandenbulche, Ind. Eng. Chem. Prod. Res. Dev. 24 (1985) 568-575

Google Scholar

[31] Q.F. Zeng, Ph. D. Thesis, Northwestern Polytechnical University, 2001.

Google Scholar