Preparation and Characterization of Nafion-Zirconia Composite Membrane for PEMFC

Article Preview

Abstract:

Polymer electrolyte membrane based on Nafion and zirconium oxide (ZrO2) was developed via film casting method. The content of ZrO2 (1.0, 2.0, and 3.0 wt.%) was incorporated with Nafion solution to prepare Nafion-ZrO2 composite membranes. Recast Nafion membrane was used as reference material. All of the prepared membranes have been subjected to both physical and chemical characterizations such as Fourier transform infra-red (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) analysis, water uptake rate (WUR) and conductivity measurements. The Nafion-ZrO2 composite membranes were found to possess high thermal stability (Tg= 188 - 192°C) and conductivity (0.30 – 0.93 S cm-1). This study demonstrates the possibility of developing Nafion-ZrO2 composite membrane as promising polymer electrolyte membrane for fuel cell operated at medium temperature and low humidity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

263-268

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Handley, N.P. Brandon and R. van der Vorst: J. Power Sources Vol. 106 (2002), p.344

Google Scholar

[2] B. Baradie, J.P. Dodelet and D. Guay: J. Electroanal. Soc.Vol. 480 (2000), p.101

Google Scholar

[3] M. Gil, X. Ji, X. Li, H. Na, J. Eric Hampsey and Y. Lu: J. Membr. Sci. Vol. 234 (2004), p.75

Google Scholar

[4] M. Wakizoe, O.A. Velev and S. Srinivasan: Electrochim. Acta Vol. 40 (1995), p.335

Google Scholar

[5] N. Li, F. Zhang, J. Wang, S. Li, S. Zhang: Polym. Vol. 50 (2009), p.3600

Google Scholar

[6] S.H. Kwak, T.H. Yang, C.S. Kim and K.H Yoon: Electrochim. Acta Vol. 50 (2004), p.653

Google Scholar

[7] Z. Jie, T. Haolin and P. Mu: J. Membr. Sci. Vol. 321 (2008), p.41

Google Scholar

[8] K.T. Park, U.H. Jung, D.W. Choi, K. Chun, H.M. Lee and S.H. Kim: J. Power Sources Vol. 177 (2008), p.247

Google Scholar

[9] M.P. Rodgers, Z. Shi and S. Holdcroft: J. Membr. Sci. Vol.325 (2008), p.346

Google Scholar

[10] A. Mahreni, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud and S.E. Iyuke: J. Membr. Sci. Vol. 327 (2009), p.32

Google Scholar

[11] J.-H. Tian, P.-F. Gao, Z.-Y. Zhang, W.-H. Luo and Z.-Q. Shan: Int. J. Hydrogen Energy Vol. 33 (2008), p.5686

Google Scholar

[12] J. Pan, H. Zhang, W. Chen and M. Pan: Int. J. Hydrogen Energy Vol. 35 (2010), p.2796

Google Scholar

[13] M.A. Navarraa, C. Abbatia and B. Scrosati: J. Power Sources Vol. 183 (2008), p.109

Google Scholar

[14] M. Amjadi, S. Rowshanzamir, S.J. Peighambardoust , M.G. Hosseini and M.H. Eikani: Int. J. Hydrogen Energy Vol. 35 (2010), p.9252

DOI: 10.1016/j.ijhydene.2010.01.005

Google Scholar

[15] N.H. Jalani, K. Dunn and R. Datta: Electrochim. Acta Vol. 51 (2005), p.553

Google Scholar

[16] A. Sacca, I. Gatto, A. Carbone, R. Pedicini and E. Passalacqua: J. Power Sources Vol. 163 (2006), p.47

Google Scholar

[17] S.-H. Park, J.-S. Park, S.-D. Yim, S.-H. Park, Y.-M. Lee and C.-S. Kim: J. Power Sources Vol. 181 (2008), p.259

Google Scholar

[18] L. Barbora, S. Acharya, R. Singh, K. Scott and A. Verma: J. Membr. Sci. Vol. 326 (2009), p.721

Google Scholar

[19] V.S. Silva, B. Ruffmann, H. Silva, V.B. Silva, A. Mendes, L.M. Madeira and S. Nunes: J. Membr. Sci. Vol. 284 (2006), p.137

Google Scholar