Fabrication of (GOx/Pt-DENs)n/CNTs Nanocomposite and their Electrochemical Properties for Anode in Biofuel Cell

Article Preview

Abstract:

In this paper, a method of carbon nanotube coated with the dendrimer encapsulated platinum nanoparticles(Pt-DENs/CNTs) was introduced, and the properties of enzyme electrode modified by the Pt-DENs/CNTs were investigated. The formation of the self-assembled (GOx/Pt-DENs)n/CNTs construction was expiored by high resolution transmission electron microscopy (HRTEM). And the results indicated that the uniform growth of the layer-by-layer nanostructures onto carboxyl-functionalized CNTs. The electrochemical properties of the enzyme anode modified by (GOx/Pt-DENs)n/CNTs, which act as biofuel cell anode, was studied by electrochemica measurements. Owing to its nanostructure, the (GOx/Pt-DENs)n/CNTs heterostructures have a large specific area, a high surface active center, good conductivity and macro tunnel effect, therefore the electrode modified by (GOx/Pt-DENs)n/CNTs has series of attractive electrochemical characteristics so as to enhance biofuel cell’s function.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

3225-3230

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Michael, Moehlenbrock and D.Shelley, Minteer. Chem. Soc. Rev. 37: 1188-1196 (2008).

Google Scholar

[2] A. Heller. Phys.Chem. Chem. Phys. 6:209-216 (2004).

Google Scholar

[3] E. Katz and V. Privman. Chem. Soc. Rev. 39:1835-1857 (2010).

Google Scholar

[4] I. Robel, V. Subramanian, M. Kuno and P.V. Kamat. J. Am. Chem. Soc. 128: 2385-2393 (2006).

Google Scholar

[5] El. dead, S. Mohamed and O. takeo. Electrochem. Commun. 4(4): 288-298 (2002).

Google Scholar

[6] R.A. Bullen, T.C. Arnot, J.B. Lakeman and F.C. Walsh. Biosens. Bioelectron. 21:2015-2045 (2006).

Google Scholar

[7] B.C. Kim, S. Nair and J. Kim. Nanotechnology. 16(2): 382-388 (2005).

Google Scholar

[8] F. Grohn, , B. Bauer, Y.A. Akpalu,., C.L. Jackson and E.J. Amis. Macromolecules. 33(16): 6042-6050 (2000).

DOI: 10.1021/ma000149v

Google Scholar

[9] S. Lijimas. Nature. 354: 56-58 (1991).

Google Scholar

[10] L. H. Xu, Y. H. Zhu, L. H. Tang, X. L. Yang and C. Z. Li, Electroanalysis. 19(6): 717-72228 (2007).

Google Scholar

[11] H. Y. Zhu, X. L. Yang, L. H. Xu and C. Z. Li, Electroanalysis. 19(6): 698-703 (2007).

Google Scholar

[12] M. Zhao and R. M. Crooks. Angew. Chem. Int. Ed. Engl. 38(3): 364-366 (1999).

Google Scholar

[13] N. Zhou, J. Wang, T. Chen, Z. Yu and G. Li, Anal. Chem. 78: 5227 (2006).

Google Scholar

[14] S. Carrara, V. Bavastrello, D. Ricci, E. Stura and C. Nicolini, Sens. Actuator B 109: 221-223 (2005).

Google Scholar

[15] L.H. Tang, Y.H. Zhu, L. H. Xu, X. L. Yang and C. Z. Li. Talanta 73: 438–443 (2007)

Google Scholar

[16] H. Zhu, Y. Zhu, X. Yang and C. Li. Chem. Lett. 35: 326-331 (2006).

Google Scholar

[17] C.X. Cai and J. Chen, Anal. Biochem. 325 (2004) 285.

Google Scholar

[18] K. Sugikawa, M. Numata, K. Kaneko, K. Sada and S. Shinkai. Langmuir 24: 13270-13275 (2008).

DOI: 10.1021/la802211q

Google Scholar

[19] A. Guiseppi-Elie, C.H. Lei and R.H. Baughman. Nanotechnology 13: 559-563 (2002).

Google Scholar