Highly Sensitive Detection of Trace Hg2+ Based on Fine CdS Nanodots Grew from a DNA-Directed Alternate Dialysis Method

Article Preview

Abstract:

Fine CdS nanodots (~5 nm) have been prepared in aqueous solution under the control of ds-DNA via a novel alternating dialysis procedure, which have been characterized by TEM, UV-vis, fluorescence (FL) and resonance light scattering (RLS) spectra. The resultant well-dispersed CdS nanodots present a strong FL peak at 339 nm and RLS bands around 394 nm. Interestingly, it was found that the quenching of FL and the enhancing of RLS intensity are dependent on the concentration of Hg2+, both of which showed good linear relationship over the range of 0.01-100 mmol/L, with a detection limit (3s) as low as 0.91 nmol/L. Good selectivity of this method for Hg2+ analysis has also been checked over other metal ions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

536-539

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.M. Nolan and S.J. Lippard: Chem. Rev. Vol. 108 (2008), p.3443

Google Scholar

[2] J. Mutter, J. Naumann, R. Schneider, H. Walach and B. Haley: Neuro. Endocrinol. Lett. Vol. 26 (2005) p.439

Google Scholar

[3] O.T. Butler, J.M. Cook, C.F. Harrington, S.J. Hill, J. Rieuwerts and D.L. Miles: J. Anal. At. Spectrom. Vol. 21 (2006), p.217

Google Scholar

[4] Y.F. Li, C.Y. Chen, B. Li, J. Sun, J.X. Wang, Y.X. Gao, Y.L. Zhao and Z.F. Chai: J. Anal. At. Spectrom. Vol. 21 (2006), p.94

Google Scholar

[5] M. Leermakers, W. Baeyens, P. Quevauviller and M. Horvat: Trends Anal. Chem. Vol. 24 (2005), p.383

Google Scholar

[6] J.-S. Lee, M. S. Han and C. A. Mirkin: Angew. Chem. Int. Ed. Vol. 46 (2007), p.4093

Google Scholar

[7] X.-J. Xue, F. Wang and X.-G. Liu: J. Am. Chem. Soc. Vol. 130 (2008), p.3244

Google Scholar

[8] C. Zhu, L. Li, F. Fang, J. Chen and Y. Wu: Chem. Lett. Vol. 34 (2005), p.898

Google Scholar

[9] N. Ma, J. Yang, K.M. Stewart and S.O. Kelley: Langmuir Vol. 23 (2007), p.12783

Google Scholar

[10] J. P. Xie, Y.G. Zheng and J.Y. Ying: Chem. Commun. Vol. 46 (2010), p.961

Google Scholar

[11] C.-C. Huang and H.-T. Chang: Anal. Chem Vol. 78 (2006), p.8332

Google Scholar

[12] C.-W. Liu, C.-C. Huang and H.-T. Chang: Langmuir Vol. 24 (2008), p.8346

Google Scholar

[13] C.-J. Yu and W.-L. Tseng: Langmuir Vol. 24 (2008), p.12717

Google Scholar

[14] J.-S. Lee, M. S. Han and C. A. Mirkin: Angew. Chem. Int. Ed. Vol. 46 (2007), p.4093

Google Scholar

[15] Y. Fan, Y.F. Long and Y.F. Li: Anal. Chim. Acta Vol. 653 (2009), p.207

Google Scholar

[16] A. Ono and H. Togashi: Angew. Chem. Int. Ed. Vol. 43 (2004), p.4300

Google Scholar

[17] X. Liu, Y. Tang, L. Wang, J. Zhang, S. Song, C. Fan and S. Wang: Adv. Mater. Vol. 19 (2007), p.1471

Google Scholar

[18] Y.F. Long, D.L. Jiang, X. Zhu, J.X. Wang and F.M. Zhou: Anal. Chem. Vol. 81 (2009), p.2652

Google Scholar

[19] B. Chen, Y. Yu, Z. Zhou and P. Zhong: Chem. Lett. Vol. 33 (2004), p.1608

Google Scholar

[20] C. Zhu, L. Li, F. Fang, J. Chen and Y. Wu: Chem. Lett. Vol. 34 (2005), p.898

Google Scholar

[21] L. Berti, A. Alessandrini, M. Bellesia and P. Facci: Langmuir Vol. 23 (2007), p.10891

Google Scholar

[22] A.K. Brian and G.M. Harold: Langmuir Vol. 16 (2000), p.3588

Google Scholar

[23] D.C. Harris: Quantitative Chemical Analysis, 7th ed. (W. H. Freeman & Co., New York 2007).

Google Scholar