Controllable Growth and Gas Sensitivity Properties of Zinc Oxide Nanocrystalline by Solid-State Reaction

Article Preview

Abstract:

Zinc oxide (ZnO) nanocrystalline with different morphologies was successfully fabricated by solid-state reaction using aging Zn as precursor. Systematic experiments were carried out to investigate the factors that affect the morphologies of the samples. X-ray diffraction (XRD) spectrum shows that the as-prepared sample was hexagonal wurtzite structure. Scanning electron microscopy (SEM) images indicate that ZnO with different morphologies such as comb-like, tetrapod and flake structures, could be controlled by simply varying the ambient pressure, gas mixture ratio and growth temperature. The gas sensitivity properties of ZnO nanocrystalline thin films are investigated by observing the change of capacitance and conductance with a planar capacitor. It is found that the comb-like ZnO thin film sensor exhibits high sensitivity and fast response to ethanol at 150 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

585-589

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Fan and J.G. Lu: Appl. Phys. Lett. Vol. 86 (2005), p.032111.

Google Scholar

[2] K. Kitamura, T. Yatsui, M. Ohtsu and G.C. Yi: Nanotechnology Vol. 19 (2008), p.175305.

Google Scholar

[3] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P.Yang: Adv. Mater. Vol. 13 (2001), p.113.

Google Scholar

[4] A. Sekar, S.H. Kim, A. Umar and Y.B. Hahn: J. Cryst. Growth Vol. 277 (2005), p.471.

Google Scholar

[5] B.D. Yao, Y.F. Chan and N. Wang: Appl. Phys. Lett. Vol. 81 (2002), p.757.

Google Scholar

[6] C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee and S.T. Lee: Appl. Phys. Lett. Vol. 83 (2003), p.3168.

Google Scholar

[7] D.K. Hwang, S.H. Kang, J.H. Lim, E.J. Yang, J.Y. Oh, J.H. Yang and S.J. Park: Appl. Phys. Lett. Vol. 86 (2005), p.222101.

Google Scholar

[8] H.S. Kim, F. Lugo, S.J. Pearton, D.P. Norton, Y.L. Wang and F. Ren: Appl. Phys. Lett. Vol. 92 (2009), p.112108.

Google Scholar

[9] T. Chen, S.Y. Liu, Q. Xie, Y.L. Jiang, G.P. Ru, R. Liu and X.P. Qu: Microelectron. Eng. Vol. 87 (2010), p.1483.

Google Scholar

[10] J. Liu, S. Wang, Z. Bian, M. Shan and C. Huang: Appl. Phys. Lett. Vol. 94 (2009), p.173107.

Google Scholar

[11] T.H. Fang, W.J. Chang, W. Water and C.C. Lee: Physica E Vol. 42 (2010), p.2139.

Google Scholar

[12] B. Shouli, C. Liangyuan, L. Dianqing, Y. Wensheng, Y. Pengcheng, L. Zhiyong, C. Aifan and C.C. Liu: Sens. Actuators B, Chem. Vol. 146 (2010), p.129.

DOI: 10.1016/j.snb.2010.02.011

Google Scholar

[13] E. Ayyildiz, L. Nuho and A TÜRÜT: J. Electron. Mater. Vol. 31 (2002), p.119.

Google Scholar

[14] C.M. Ghimbeu, J. Schoonman, M. Lumbreras and M. Siadat: Appl. Surf. Sci. Vol. 253 (2007), p.7483.

Google Scholar