Synthesis and Magnetic Properties of Fe–Ni Alloy Nanoparticles Obtained by Hydrothermal Reaction

Article Preview

Abstract:

The magnetic properties of Fe-Ni alloy nanoparticles with particle size in the range 35-45 nm were prepared by almost simultaneously reducing Fe(II) and Ni(II) solution using hydrazine hydrate as a reducing agent in strong alkaline media for two hours at 80 °C. Chemical composition, crystal structure, morphology, thermal stability and magnetic properties of as synthesized Fe-Ni alloy nanoparticles were systematically characterized by means of XRD, TEM, TG-DSC and VSM. These results indicate that there is a vitally important relationship among particle size, particle morphology, and different mol ratio of FeSO4 to NiSO4. The saturation magnetization (Ms). and coercivity (Hc) strongly affected by the composition of Fe-Ni alloy nanoparticles. The hydrothermal reaction is a simple, effective, and low-cost synthetic method to prepare FeNi3 alloy nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Pages:

748-753

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Coutu, L. Chaput and T. Waeckerle: J.Magn. Magn. Mater Vol. 215-216 (2000), p.237

Google Scholar

[2] Y.W. Zhao, C.Y. Ni, D. Kruczynski, X.K. Zhang and J.Q. Xiao: J. Phys. Chem. B Vol. 108 (2004), p.3691

Google Scholar

[3] S.F. Moustafa and W.M. Daoush: J. Mater. Process. Technol Vol. 181 (2007), p.59

Google Scholar

[4] B.L. Cushing, V.O. Golub, M. Henry, B.L. Oliva, E. Cook, C.W. Holmes and C.J. O'Connor: Nanotechnology Vol. 16 (2005), p.1701

Google Scholar

[5] N.J. Tang, W. Zhong, H.Y. Jiang, Z.D. Han, W.Q. Zou and Y.W. Du: Solid. State. Commun Vol. 132 (2004), p.71

Google Scholar

[6] J. M. Yan, X. B. Zhang, S. Han, H. Shioyama and Q. Xu: J. Power. Sources Vol. 194 (2009), p.478

Google Scholar

[7] S.F. Moustafa and W.M. Daoush: J. Mater. Process. Technol Vol. 181 (2007), p.59

Google Scholar

[8] S. Vitta, A. Khuntia, G. Ravikumar and D. Bahadur: J. Magn. Magn. Mater Vol. 320 (2008), p.182

Google Scholar

[9] A. Djekoun, N. Boudinar, A. Chebli, A. Otmani, M. Benabdeslem, B. Bouzabata and J. M. Grenecheb: Phys. Proce Vol. 2 (2009), p.693

DOI: 10.1016/j.phpro.2009.11.012

Google Scholar

[10] Y.M. Liang, T.J. Hua, Y.G. Jie T.M. Yi and Q.G. Zhou: Trans. Nonferrous. Met. Soc. China Vol. 20 (2010), p.632

Google Scholar

[11] D. Bonyuet, G. Gonz´alez, J. Ochoa, F. Gonz´alez-Jimenez and L. D'Onofrio: J. Alloys. Compd Vol. 434-435 (2007), p.442

Google Scholar

[12] V.E. Buravtsova, E.A. Gan'shina, V.S. Guschin, S.I. Kasatkin, A.M. Muravyev and F.A. Pudonin: Microelectron. Eng Vol. 69 (2003), p.279

DOI: 10.1016/s0167-9317(03)00310-1

Google Scholar

[13] Y.P. Shen, H.H. Hng and J.T. Oh: J. Alloys. Compd Vol. 379 (2004), p.266

Google Scholar

[14] Y.Z. Chen, X.H. Luo, G.H. Yue, X.T. Luo and D.L. Peng: Mater. Chem. Phys Vol. 113 (2009), p.412

Google Scholar

[15] H.G. Kim, K. Sumiyama and K. Suzuki: J. Magn. Magn. Mater Vol. 320 (2008), p.1822

Google Scholar

[16] X.M. Liu, S.Y. Fu and C.Y. Huang: Mater. Lett Vol. 59 (2005), p.3791

Google Scholar

[17] T. Waeckerle', H. Fraisse and Q. Furnemont: J. Magn. Magn. Mater Vol. 290-291 (2005), p.1584

Google Scholar

[18] I. Chicinas, V. Pop, O. Isnard, J.M. Le Breton and J. Juraszek: J. Alloys. Compd Vol. 352 (2003), p.34

Google Scholar

[19] Y.S. Hong, Y.W. Rheem, M. Lai, D.M. Cwiertny, S. L.Walker and N.V. Myung : Chem. Eng. J Vol. 151 (2009), p.66

Google Scholar

[20] Y.W. Zhao, C.Y. Ni, X.K. Zhang and J.Q. Xiao: J. Phys. Chem. B Vol. 108 (2004), p.3691

Google Scholar

[21] B.H. Lee, B.S. Ahn, D.G. Kim, S.T. O, H. Jeon, J. Ahn, Y.D. Kim: Mater. Lett Vol. 57 (2003), p.1103

Google Scholar

[22] A. Azizi and S.K. Sadrnezhaad: J. Alloys. Compd Vol. 485 (2009), p.484

Google Scholar

[23] X.G. Li and S. Takahashi: J. Magn. Magn. Mater Vol. 214 (2000), p.195

Google Scholar