[1]
Elwin L. Rooy, "Properties and Selection: Nonferrous Alloys and special-purpose Materials", Ed. Steven R. Lampman, Theodore B. Zorc, ASM Handbook vol. 2 (1993), p.84&106.
Google Scholar
[2]
Z. Feng, Y. Liu, G. E. Thompson and P. Skeldon, "Crack-free sol-gel coatings for protection of AA1050 aluminium alloy" , Journal of surface and interface analysis , 310 (2010), pp.306-310.
DOI: 10.1002/sia.3162
Google Scholar
[3]
H. Wang, R. Akid, "A room temperature cured sol-gel anticorrosion pre-treatment for Al 2024- T3 alloys ", Journal of corrosion science, 49 (2007), pp.4491-4503.
DOI: 10.1016/j.corsci.2007.04.015
Google Scholar
[4]
M. Kallio, J. Mannila, A. Vesa, R. Mahlberg, T. Ohligschläger, "Modification of surface properties of metals by sol-gel coatings", SSPC/PDCA Joint Conference, Las Vegas, 23-26 Jan,( 2005).
Google Scholar
[5]
D. Wang, G.P. Bierwagen, "Sol-gel coatings on metals for corrosion protection", Journal of Progress in Organic Coatings, 64 (2009), pp.331-337.
DOI: 10.1016/j.porgcoat.2008.08.010
Google Scholar
[6]
Y.J. Du, M. Damron, G. Tang, H. Zheng, C.J. Chr, J.H. Osborne, " Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates" , Journal of Progress in Organic Coatings, 41, 226 (2001), pp.226-232.
DOI: 10.1016/s0300-9440(01)00133-3
Google Scholar
[7]
(a) L.S. Kasten, J.T. Grant, N. Grebasch, N. Voevodin, F.E. Arnold, M.S. Donley, "An XPS study of cerium dopants in sol–gel coatings for aluminum 2024-T3", Surf. Coat. Technol. 140 (2001), p.11; (b) N.N. Voevodin, N.T. Grebasch, W.S. Soto, F.E. Arnold, M.S. Donley, "Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors", Surf. Coat. Technol. 140 (2001), p.24.
DOI: 10.1016/s0257-8972(01)01004-0
Google Scholar
[8]
(a) W.J. van Ooij, J. Song, V. Subramanian, "Silane-based pretreatments of aluminum and its alloys as chromate alternatives", ATB Metall. 37 (1997), p.137; (b) W.J. van Ooij, T. Child, "Protecting metals with silane coupling agents", Chemtech 28 (1998), p.26; (c) W.J. van Ooij, D.Q. Zhu, G. Prasad, S. Jayaseelan, Y. Fu, Teredesai, Surface Engineering 16 (2000), p.386.
DOI: 10.1179/026708400101517369
Google Scholar
[9]
W.J. van Ooij," Corrosion protection of aluminum alloys by conversion systems and organic coatings", ATB Metall. 38 (1998), p.63.
Google Scholar
[10]
G.P. Sundararajan, W.J. van Ooij, "Silane-based pretreatments for automotive steels", Surface Engineering 16 (2000), p.315.
DOI: 10.1179/026708400101517305
Google Scholar
[11]
V. Subramanian, W.J. van Ooij, "Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes", Corrosion 54 (1998), p.204.
DOI: 10.5006/1.3284845
Google Scholar
[12]
(a) T.L. Metroke, O. Kachurina, E.T. Knobbe, "Spectroscopic and corrosion resistance characterization of GLYMO-TEOS Ormosil coatings for aluminum alloy corrosion inhibition", Progress in Organic Coatings 44 (2002), p.295; (b) T.L. Metroke, O. Kachurina, E.T. Knobbe, "Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic–inorganic thin films on 2024-T3 aluminum alloy", Progress in Organic Coatings 44 (2002), p.185.
DOI: 10.1016/s0300-9440(02)00007-3
Google Scholar
[13]
T.L. Metroke, R.L. Parkhill, E.T. Knobbe, "Synthesis of hybrid organic–inorganic sol–gel coatings for corrosion resistance", Mater. Res. Soc. Symp. Proc. 576 (1999), p.293.
DOI: 10.1557/proc-576-293
Google Scholar
[14]
(a) O. Kachurina, T.L. Metroke, E. Stesikova, E.T. Knobbe, "Comparison of single and multilayer coatings based on Ormosil and conversion layers for aluminum alloy corrosion inhibition", J. Coat. Technol. 74 (2002), p.43; (b) T.L. Metroke, O. Kachurina, E.T. Knobbe, "Electrochemical and salt spray analysis of multilayer Ormosil/conversion coating systems for the corrosion resistance of 2024-T3 aluminum alloys", J. Coat. Technol. 74 (2002), p.53.
DOI: 10.1007/bf02720165
Google Scholar
[15]
K.H. Wu, M.C. Li, C.C. Yang, G.P. Wang, "Domain size and thermal stability of amine-cured hybrid films as corrosion resistance treatments for aluminum alloy", Journal of Non-Crystalline Solids 352 (2006), p.2897–2904.
DOI: 10.1016/j.jnoncrysol.2006.01.100
Google Scholar
[16]
K.H. Wu, T.C. Chang, C.C. Yang, G.P. Wang, " Dynamics and corrosion resistance of amine-cured organically modified silicate coatings on aluminum alloys", Journal of Thin Solid Films, 513 ( 2006), pp.84-89.
DOI: 10.1016/j.tsf.2006.01.022
Google Scholar
[17]
Standard Test Methods for Measuring Adhesion by Tape Test, ASTM standard, D3359-02, (2006).
Google Scholar
[18]
John comyn, adhesion science, The Royal Society of Chemistry, 1-120, (1997).
Google Scholar
[19]
Sina Ebnesajjad, Adhesives Technology Handbook, Second Edition, Copyright © by William Andrew Inc (2008), pp.1-62 and 183-206.
Google Scholar
[20]
T. Kurisu, H. Kozuka, J.Am, "Effects of heating rate on stress evolution in alkoxide-derived silica gel-coating films", Journal of Ceramic Society, 89 (2006), p.2453.
DOI: 10.1111/j.1551-2916.2006.01107.x
Google Scholar
[21]
- H. Kozuka, S. Takenaka, H. Tokita, T. Hirano, Y. Higashi, T. Hamatani, " Stress and cracks in gel-derived ceramic coatings and thick film formation", Journal of Sol-Gel Science and Technology ,26 (2003), p.681.
DOI: 10.1023/a:1020773415962
Google Scholar