[1]
A. Bonakdar, B. Mobasher, Multi-parameter study of external sulfate attack in blended cement materials. Construction and Building Materials, 2010. 24(1): pp.61-70.
DOI: 10.1016/j.conbuildmat.2009.08.009
Google Scholar
[2]
M. Santhanam, M. D. Cohen, J. Olek, Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cement and Concrete Research, 2003. 33(3): pp.325-332.
DOI: 10.1016/s0008-8846(02)00955-9
Google Scholar
[3]
A. J. Boyd, S. Mindess, The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack. Cement and Concrete Research, 2004. 34(3): pp.373-377.
DOI: 10.1016/j.cemconres.2003.08.010
Google Scholar
[4]
P. W. B. Brown, Steven, The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack. Cement and Concrete Research, 2000. 30(10): pp.1535-1542.
DOI: 10.1016/s0008-8846(00)00386-0
Google Scholar
[5]
F. M. Girardi, R. Di, Resistance of concrete mixtures to cyclic sulfuric acid exposure and mixed sulfates: Effect of the type of aggregate. Cement and Concrete Composites, 2011. 33(2): pp.276-285.
DOI: 10.1016/j.cemconcomp.2010.10.015
Google Scholar
[6]
E. E. Hekal, E. Kishar, H. Mostafa, Magnesium sulfate attack on hardened blended cement pastes under different circumstances. Cement and Concrete Research, 2002. 32(9): pp.1421-1427.
DOI: 10.1016/s0008-8846(02)00801-3
Google Scholar
[7]
M. M. O'Connell, M. G. C. Richardson, Biochemical attack on concrete in wastewater applications: A state of the art review. Cement and Concrete Composites, 2010. 32(7): pp.479-485.
DOI: 10.1016/j.cemconcomp.2010.05.001
Google Scholar
[8]
D. G. K. Snelson, M. John, Characterisation of an unprocessed landfill ash for application in concrete. Journal of Environmental Management, 2010. 91(11): pp.2117-2125.
DOI: 10.1016/j.jenvman.2010.04.015
Google Scholar
[9]
D. G. K. Snelson, M. John, Resistance of mortar containing unprocessed pulverised fuel ash (PFA) to sulphate attack. Cement and Concrete Composites, 2010. 32(7): pp.523-531.
DOI: 10.1016/j.cemconcomp.2010.03.001
Google Scholar
[10]
W. Tangchirapat, C. Jaturapitakkul, P. Chindaprasirt, Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Construction and Building Materials, 2009. 23(7): pp.2641-2646.
DOI: 10.1016/j.conbuildmat.2009.01.008
Google Scholar
[11]
E. F. Irassar, Sulfate attack on cementitious materials containing limestone filler -- A review. Cement and Concrete Research, 2009. 39(3): pp.241-254.
DOI: 10.1016/j.cemconres.2008.11.007
Google Scholar
[12]
M. S. Najimi, A. R. J. Pourkhorshidi, Durability of copper slag contained concrete exposed to sulfate attack. Construction and Building Materials, 2011. 25(4): pp.1895-1905.
DOI: 10.1016/j.conbuildmat.2010.11.067
Google Scholar
[13]
M. T. Bassuoni, M. L. Nehdi, Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading. Cement and Concrete Research, 2009. 39(3): pp.206-226.
DOI: 10.1016/j.cemconres.2008.12.003
Google Scholar
[14]
P. W. Brown, A. Doerr, Chemical changes in concrete due to the ingress of aggressive species. Cement and Concrete Research, 2000. 30(3): pp.411-418.
DOI: 10.1016/s0008-8846(99)00266-5
Google Scholar
[15]
F. Bellmann, B. Möser, J. Stark, Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cement and Concrete Research, 2006. 36(2): pp.358-363.
DOI: 10.1016/j.cemconres.2005.04.006
Google Scholar
[16]
E. L. Rozière, R. A. El Hachem, F. Grondin, Durability of concrete exposed to leaching and external sulphate attacks. Cement and Concrete Research, 2009. 39(12): pp.1188-1198.
DOI: 10.1016/j.cemconres.2009.07.021
Google Scholar
[17]
K. K. Sideris, A. E. Savva, J. Papayianni, Sulfate resistance and carbonation of plain and blended cements. Cement and Concrete Composites, 2006. 28(1): pp.47-56.
DOI: 10.1016/j.cemconcomp.2005.09.001
Google Scholar
[18]
I. Sims, S. A. Huntley, The thaumasite form of sulfate attack-breaking the rules. Cement and Concrete Composites, 2004. 26(7): pp.837-844.
DOI: 10.1016/j.cemconcomp.2004.01.002
Google Scholar
[19]
J. M. M. Tulliani, Laura Negro, Alfredo Collepardi, Mario, Sulfate attack of concrete building foundations induced by sewage waters. Cement and Concrete Research, 2002. 32(6): pp.843-849.
DOI: 10.1016/s0008-8846(01)00752-9
Google Scholar
[20]
I. G. Türkmen, Rüstem Çelik, Cafer, A Taguchi approach for investigation of some physical properties of concrete produced from mineral admixtures. Building and Environment, 2008. 43(6): pp.1127-1137.
DOI: 10.1016/j.buildenv.2007.02.005
Google Scholar
[21]
J. W. Zuquan, Sun Yunsheng, Zhang Jinyang, Jiang Jianzhong Lai, Interaction between sulfate and chloride solution attack of concretes with and without fly ash. Cement and Concrete Research, 2007. 37(8): pp.1223-1232.
DOI: 10.1016/j.cemconres.2007.02.016
Google Scholar
[22]
B. Pradhan, B. Bhattacharjee, Performance evaluation of rebar in chloride contaminated concrete by corrosion rate. Construction and Building Materials, 2009. 23(6): pp.2346-2356.
DOI: 10.1016/j.conbuildmat.2008.11.003
Google Scholar
[23]
M. G. Sethuraman, P. B. Raja, Corrosion inhibition of mild steel by Datura metel in acidic medium. Pigment & Resin Technology, 2005. Volume 34 ( 6 ): p.327–331.
DOI: 10.1108/03699420510630345
Google Scholar
[24]
O. K. Abiola, J.O.E. Otaigbe, The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution. Corrosion Science, 2009. 51(11): pp.2790-2793.
DOI: 10.1016/j.corsci.2009.07.006
Google Scholar
[25]
S. A. Ali, H. A. Al-Muallem, M. T. Saeed, S. U Rahman, Hydrophobic-tailed bicycloisoxazolidines: A comparative study of the newly synthesized compounds on the inhibition of mild steel corrosion in hydrochloric and sulfuric acid media. Corrosion Science, 2008. 50(3): pp.664-675.
DOI: 10.1016/j.corsci.2007.10.010
Google Scholar
[26]
P. B. Raja, M.G. Sethuraman, Natural products as corrosion inhibitor for metals in corrosive media -- A review. Materials Letters, 2008. 62(1): pp.113-116.
DOI: 10.1016/j.matlet.2007.04.079
Google Scholar
[27]
F. Tittarelli, G. Moriconi, The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concrete. Cement and Concrete Research 2008. 38: p.1354–1357.
DOI: 10.1016/j.cemconres.2008.06.009
Google Scholar