A Novel Building Thermal Insulation Material: Expanded Perlite Modified by Aerogel

Article Preview

Abstract:

Aerogel is regarded as one kind of super thermal insulation materials which could be large-scalely used as building materials. However, the aerogel’s production cost and poor mechanical property limit the its applications. In this paper, we put forward a new low cost way to produce a novel building thermal insulation material: synthesized the aerogel within the expanded perlite’s pores, and using sodium silicate as precursor without adopting supercritical fluid drying and surface modification. The thermal conductivity of expanded perlite was successfully decreased after modified by aerogel.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 250-253)

Pages:

507-512

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Information on http://edition.cnn.com/2009/WORLD/asiapcf/02/09/china.hotel.fire

Google Scholar

[2] Z. R. Yuan, X. Q. WU, Expanded Perlite and its products, China Building Industry Press (1975), 16 (in Chinese)

Google Scholar

[3] N. Tekin, E. Kadıncı, Ö. Demirbaş, M. Alkan, A. Kara, M. Doğan, Micropor. Mesopor. Mater. 93 (2006), p.125

Google Scholar

[4] A.V. Rao, R.R. Kalesh, Sci. Technol. Adv. Mater. 4 (2003), p.509

Google Scholar

[5] A. Soleimani Dorcheh, M.H. Abbasi, J. Mater. Process. Technol. 199(2008), p.10

Google Scholar

[6] P. B. Sarawade, J. K. Kim, A. Hilonga, D.V. Quang, H. T. Kim, Micropor. Mesopor. Mater. 139 (2011), p.138

Google Scholar

[7] R. Baetens, B. P. Jelle, A. Gustavsen: submitted to Energy and Buildings (2010).

Google Scholar

[8] G.M. Pajnok, Appl. Catal. 72 (1991), p.21

Google Scholar

[9] A.S. Dias, M. Pillinger, A.A. Valente, Micropor. Mesopor. Mater. 94 (1–3) (2006), p.214

Google Scholar

[10] M.R. Jamali, Y. Aassadi, F. Shemirani, M.R.M. Hosseini, R.R. Kozani, M.M. Farahani, M.S. Niasani, Anal. Chem. Acta 579 (1) (2006), p.68

Google Scholar

[11] Q. Tang, Y. Xu, D. Wu, Y. Sun, J. Solid State Chem. 179 (5) (2006), p.1513

Google Scholar

[12] A.V. Rao, N.D. Hegde, H. Hirashima, J. Colloid Interface Sci. 305 (1) (2007), p.124

Google Scholar

[13] D. T. Ge, L. L. Yang, Y. Li, J. P. Zhao, J. Non-Cryst. Solids, 355(2009), p.2610

Google Scholar

[14] P. B. Sarawade, J. K. Kim, Y. S. Ahn, J. G. Yeo, Micropor. Mesopor. Mater. 91 (2006), p.237

Google Scholar

[15] I. Abe, K. Sato, H. Abe, M. Naito, Adv. Powder Technol. 19(2008), p.311

Google Scholar

[16] Y. D. Zhao, H. R. Yin, Glass Technology, Chemical Industry Press (2006), P. 8 (in Chinese)

Google Scholar

[17] K. Szaniawska, M. Gładkowski, L. Wicikowski, L. Murawski, J. Non-Cryst. Solids, 354 (2008), p.4481

DOI: 10.1016/j.jnoncrysol.2008.06.072

Google Scholar

[18] M. Rein, W. Körner, J. Manara, S. Korder, M. Arduini-Schster, H.-P. Eber, J. Fricke, Sol. Energy 79 (2005), p.134

Google Scholar