Simultaneous Removal of Heavy-Metal Ions by MnO2 Loaded D301 Resin

Article Preview

Abstract:

MnO2-loaded D301 weak basic anion exchange resin was used as adsorbent to simultaneously remove Co2+, Ni2+, Cd2+, Zn2+ and Cu2+ from aqueous solution contained high concentration of alkali and alkaline-earth metals ions. The effects of solution pH and coexistent ions on the adsorption were investigated. The results indicated that Co2+, Ni2+, Cd2+, Zn2+ and Cu2+ can be simultaneously removed in the wide pH range of 3 to 8. The coexistence of PO43− decreased the heavy metal ions removal rate, but for other high concentrations coexistence cations and anions such as Na+, K+, Cl, NO3, SO42− and HCO3, there is no significant impact on removal rate of heavy metals. The adsorption isotherm can be well described by Langmuir isotherm. The adsorption processes followed the pseudo first-order kinetics model. High adsorption capacity makes it a good promising candidate material for simultaneous removal of Co2+, Ni2+, Cd2+, Zn2+ and Cu2+ from aqueous solution with the co-existence of high concentration of alkali and alkaline-earth metals ions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 255-260)

Pages:

2791-2796

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.K. Naiya, A.K. Bhattacharya and S.K. Das, J. Colloid Interface Sci. 325(2008), p.48–56.

Google Scholar

[2] E. Korngold, S. Belfer and C. Urtizberea, Desalination, 104(3)(1996),p.197–201.

Google Scholar

[3] M.Y. Vilensky, B. Berkowitz and A. Warshawsky, Environ Sci Technol. 36(8) (2002), p.1851–1855.

Google Scholar

[4] J.H. Qu. J. Environ. Sci. 20(1) (2008), p.1–13.

Google Scholar

[5] B. Pan, H. Qiu, B. Pan, G. Nie, L. Xiao, L. Lv, W. Zhang, Q. Zhang and S. Zheng, Water Res. 44 (3) (2010), pp.815-824.

Google Scholar

[6] M. M. Ahammed and V. Meera, J. Hazard Mater. 181 (1-3) (2010), pp.788-793.

Google Scholar

[7] Y. I. Tarasevich and G. M. Klimova, Appl. Clay Sci. 19(1-6) (2001), pp.95-101.

Google Scholar

[8] E. Eren, B. Afsin and Y. Onal, J. Hazard Mater. 161(2-3) (2009), p.677–685.

Google Scholar

[9] N. Boujelben, J. Bouzid and Z. Elouear, J. Hazard Mater. 163(1) (2009), p.376–382.

Google Scholar

[10] R. P. Han, W. H. Zou, H. K. Li, Y. H. Li and J. Shi, J. Hazard Mater. 137(2)(2006),pp.934-942.

Google Scholar

[11] Z. L. Zhu, H. M. Ma, R. H. Zhang, Y. X. Ge, and J. F. Zhao, J. Environ. Sci.19 (2007), p.652–656.

Google Scholar

[12] L. J. Dong, Z. L. Zhu, H. M. Ma, Y. L. Qu and J. F. Zhao, J. Environ. Sci.22 (2) (2010), p.225–229.

Google Scholar

[13] V. Lenoble, C. Laclautre, B. Serpaud, V. Deluchat and J. C. Bollinger, Sci. Total Environ. 326 (1-3) (2004), p.197–207.

DOI: 10.1016/j.scitotenv.2003.12.012

Google Scholar

[14] H. J. Fan and P. R. Anderson, Sep. Pur. Technol.45 (1) (2005), p.61–67.

Google Scholar