[1]
Klaus-Jürgen Bathe, Hong Zhang, Shanhong Ji. Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions. Computers & Structures, Vol.72(1999),pp.1-16
DOI: 10.1016/s0045-7949(99)00042-5
Google Scholar
[2]
W. Dettmer, D.Perić, A Computational Framework for Fluid-Rigid Body Interaction: Finite Element Formulation and Applications. Comput. Mechods Appl. Mech. Engrg,2006, Vol.195(2006),pp.1633-1666.
DOI: 10.1016/j.cma.2005.05.033
Google Scholar
[3]
A. de Boer, A.H. van Zuijlen, H. Bijl. Review of Coupling Methods for Non-Matching Meshes.Comput. Methods Appl. Mech. Engrg,Vol.196(2007),p.1515–1525.
DOI: 10.1016/j.cma.2006.03.017
Google Scholar
[4]
Keith Stein, Richard Benney, Vinay Kalro, Tayfun E. Tezduyar. Parachute Fluid-Structure Interactions: 3-D Computation. Comput. Methods Appl. Mech. Engrg, Vol. 190(2000), pp.373-386
DOI: 10.1016/s0045-7825(00)00208-5
Google Scholar
[5]
G. S. L. Goura, K. J .Badcock etc. A Data Exchange Method for Fluid-Structure Interaction Problems. The Aeronautical Journal,Vol.105(2001),pp.215-221
DOI: 10.1017/s0001924000025458
Google Scholar
[6]
Juan Raul Cebral. Loose Coupling Algorithms for Fluid-Structure Interaction, University of Buenous(1991)
Google Scholar
[7]
Robert L. Harder and Robert N. Desmarais. Interpolation Using Surface Splines, Journal of Aircraft ,Vol.9(1972),pp.189-191
DOI: 10.2514/3.44330
Google Scholar
[8]
Shepard D. A Two Dimensional Interpolation Function for Regularly Spaced Data. Proc. 23d National Conf. of the Association for Computing Machinery, Princeton, NJ, ACM(1968)
Google Scholar
[9]
SU Bo. Study on the Theory and Method of Fluid-Structure Interaction Problems, Tongji University, Shanghai (2009)
Google Scholar
[10]
WU Zongmin. The Model, Theory and Method of Scattered Data Approximation. Beijing, Kexue Pr( 2007)
Google Scholar
[11]
Martin.D.buhmann. Radial Basis Functions : Theory and Implementations. Cambridge Univ Pr(2004)
Google Scholar
[12]
Wendland H. Piecewise polynomial, Positive Definite an Compactly Supported Radial Basis Functions of Minimal Degree. Adv Comput Math, Vol.4(1995),pp.389-396
DOI: 10.1007/bf02123482
Google Scholar