Degradation of Sulfa Pharmaceuticals in Aquatic Environment by O3 and UV/TiO2 Processes

Article Preview

Abstract:

The removal efficiencies of sulfamerazine (SMR) and sulfamethoxypyridazine (SMP) in aqueous solutions were studied using advanced oxidation technologies. The results show similar removal kinetics for two sulfa pharmaceuticals and that complete removal of all is achieved within 90 min of ozonation at the concentration of O3 (1 mgL-1) without controlling the pH. The rate constants were calculated as 0.0143 and 0.0113 min-1 for SMR and SMP, respectively. The catalysts exhibited a superior removal efficiency of SMP to those of SMR with a TiO2 concentration of 2.0 gL-1. The disappearance of these two sulfa pharmaceuticals follows a pseudo-first-order kinetics according to the Langmuir-Hinshelwood (L-H) model. The rate constants were calculated as 5 × 10-3 and 6 × 10-4 min-1 for SMR and SMP, respectively. Advanced oxidation processes (AOPs), such as O3 and UV/TiO2 processes should be an effective treatment for removing these sulfa pharmaceuticals.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 255-260)

Pages:

4222-4226

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Thomas: Toxico. Lett., Vol. 131 (2002), p.5.

Google Scholar

[2] S. Tvrtko, L. Till, S. Roverta, M. H. Amro, L. V. Rebecca and E. David: Muta. Res., Vol. 552 (2004), p.101.

Google Scholar

[3] O. A. H. Jones, N. Voulvoulis and J. N. Lester: Environ. Pollut., Vol. 145 (2007), p.793.

Google Scholar

[4] A. Y. Lin and Y. Tsai: Sci. Total Environ., Vol. 407 (2009), p.3793.

Google Scholar

[5] S. Zorita, L. Martensson and L. Mathiasson: Sci. Total Environ., Vol. 407 (2009), p.2760.

Google Scholar

[6] S. D. Richardson and T. A. Ternes: Anal. Chem., Vol. 77 (2005), p.3807.

Google Scholar

[7] P. Calza, C. Mdeana, M. Pazzi, C. Baiocchi and E. Pelizzetti: Appl. Catal. B, Vol. 53 (2004), p.63.

Google Scholar

[8] N. Furusawa: J. Chromatogr. A, Vol. 898 (2000), p.185.

Google Scholar

[9] Y. Ikai, H. Oda, N. Kawamura, J. Hayakawa, M. Yamada, K. Harada, M. Suzuki and H. Nadazawa: J. Chromatogr. A, Vol. 541 (1991), p.393.

Google Scholar

[10] R. Andreozzi, V. Caprio, A. Insola and R. Marotta: Catal. Today, Vol. 53 (1) (1999), p.51.

Google Scholar

[11] APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed., APHA, AWWA and WPCF. Washington, DC, (1992).

Google Scholar

[12] A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J. M. Herrmann, H. Tahiri and Y. Ait-Ichou: Appl. Catal. B, Vol. 7 (1995), p.49.

Google Scholar

[13] A. Fujishima, T. N. Rao and D. A. Tryk: J. Photochem. Photobiol. C, Vol. 1 (2000), p.1.

Google Scholar

[14] J. C. Yu, J. G. Yu and J. C. Zhao: Appl. Catal. B, Vol. 36 (2002), p.31.

Google Scholar