Sintering Mechanism of Composite Ag Nanoparticles and its Application to Bonding Process-Effects of Ag2CO3 Contents on Bondability to Cu-

Article Preview

Abstract:

We have proposed a novel bonding process using composite Ag nanoparticles composed of Ag metallo-organic nanoparticles and Ag2CO3 for an application to the assembly of electronic devices. In this research, the sintering mechanisms of the composite Ag nanoparticles are discussed based on the results of the observation of the sintering behaviors and the investigation of the thermal characteristics. Moreover, Cu specimens were bonded using the composite Ag nanoparticles for measuring the bonding strengths. Based on the results, the effects of the Ag2CO3 contents in the composite Ag nanoparticles and the bonding conditions on the bondability were evaluated. As a result, it was found that the composite Ag nanoparticles were sintered rapidly because of the interaction between the Ag metallo-organic nanoparticles and Ag2CO3. Thereby, the bondability was improved by optimizing the contents of Ag2CO3 in the composite Ag nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 26-28)

Pages:

499-502

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Ide, S. Angata, A. Hirose and K.F. Kobayashi, A novel bonding process using Ag metallo-organic nanoparticles, Acta mater. Vol. 53, pp.2385-2393, (2005).

DOI: 10.1016/j.actamat.2005.01.047

Google Scholar

[2] T. Yamaguchi, E. Ide, S. Kobayashi, A. Hirose, K.F. Kobayashi, M. Yamagiwa and Y. Murakami, Novel electronics assembly process using Ag nanoparticles -Development of bonding process for aluminum-, Smart Processing Technology, Vol. 1, High Temperature Society of Japan, (2006).

Google Scholar

[3] P. Norby, R. Dinnebier, A. N. Fitch, Decomposition of silver carbonate - the crystal structure of two high-temperature modifications of Ag2CO3, Inorganic Chemistry, Volume 41, pp.3628-3637, (2002).

DOI: 10.1021/ic0111177

Google Scholar

[4] Y. Sawada and N. Watanabe, Thermal Decomposition of Silver Carbonate 1. Differential Thermal Gas analysis, Thermochimica Acta, Volume 138, pp.257-265, 1989 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

DOI: 10.1016/0040-6031(89)87262-4

Google Scholar

[95] [90] [85] [80] TG (mass%).

Google Scholar

[75] Endothermal peak 2nd weight reduction Onset: 449K Offset: 464K DTA TG (a) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%).

Google Scholar

[75] Endothermal peak 2nd weight reduction Onset: 449K Offset: 464K DTA TG 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%).

Google Scholar

[75] Endothermal peak 2nd weight reduction Onset: 449K Offset: 464K 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%).

Google Scholar

[75] 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%).

Google Scholar

[75] Endothermal peak 2nd weight reduction Onset: 449K Offset: 464K DTA TG DTA TG (a) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG (b) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG DTA TG (b) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG (c)273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Onset: 453K Offset: 471K 2nd weight reduction DTA TG DTA TG (c) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Offset: 453K Onset: 521K 2nd weight reduction DTA TG (d) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Offset: 453K Onset: 521K 2nd weight reduction DTA TG 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) 273 373 473 573 673 773 Temperature (K) DTA (µV) 105 100.

Google Scholar

[95] [90] [85] [80] TG (mass%) Offset: 453K Onset: 521K 2nd weight reduction DTA TG DTA TG (d) Fig. 4 DTA and TG traces of composite Ag nanoparticles with synthesis times of (a) 1, (b) 3, (c) 8 and (d) 12h with a heating rate of 10K/min in air. Fig. 5 Tensile strength of Cu-to-Cu joints using comoposite Ag nanoparticles with various synthesis times of 1 to 12h bonded under the condition of 573K-5MPa-5min. 1h 3h 4h 8h 12h Synthesis time (hour) Tensile strength (MPa).

DOI: 10.5155/eurjchem.7.4.436-441.1445

Google Scholar

[20] 100.

Google Scholar

[40] [60] [80] 1h 3h 4h 8h 12h Synthesis time (hour) Tensile strength (MPa).

Google Scholar

[20] 100.

Google Scholar

[40] [60] [80] 1h 3h 4h 8h 12h Synthesis time (hour) Tensile strength (MPa).

Google Scholar

[20] 100.

Google Scholar

[40] [60] 80.

Google Scholar