Green's Function Solution of the Semi-Cylindrical Gap with Multiple Shallow-Buried Inclusions

Article Preview

Abstract:

In mechanical engineering, earthquake engineering and modern municipal construction, semi-cylindrical gap and shallow-buried inclusion structure are used widely. In this paper, Green's Function is studied, which is the solution of displacement field for elastic semi-space with semi-cylindrical gap and multiple shallow-buried inclusions while bearing anti-plane harmonic line source force at any point. In the complex plane, considering the symmetry of SH-wave scattering , the displacement field aroused by the anti-plane harmonic line source force and the scattering displacement field impacted by semi-cylindrical gap and multiple cylindrical inclusions comprised of Fourier-Bessel series with undetermined coefficients which satisfies the stress-free condition on the ground surface are constructed. Through applying the method of multi-polar coordinate system, the equations with unknown coefficients can be obtained by using the displacement and stress condition of the cylindrical inclusion in the radial direction. According to orthogonality condition for trigonometric function, these equations can be reduced to a series of algebraic equations. Then the value of the unknown coefficients can be obtained by solving these algebraic equations. Green's function, that is, the total wave displacement field is the superposition of the displacement field aroused by the anti-plane harmonic line source force and the scattering displacement field. By using the expressions, an example is provided to show the effect of the change of relative location of semi-cylindrical gap , the cylindrical inclusions and the location of the line source force. Based on this solution, the problem of interaction of semi-cylindrical gap , multiple cylindrical inclusions and a linear crack in semi-space can be investigated further.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 261-263)

Pages:

863-867

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Yang and A. Norris: Shear Wave Scattering from a Debonded Fiber. Mech. Phys.Solids, Vol.39(1991),pp.273-280

Google Scholar

[2] Karim M.R., Awal M.A., Kundu T.: Elastic Wave Scattering by Cracks and Inclusions in Plates: In-Plane Case. International Journal of Solids and Structures,Vol.29(1992),No.19,pp.2355-2367

DOI: 10.1016/0020-7683(92)90220-n

Google Scholar

[3] Li Hongliang, Han Guangcai, Li Hong: Interaction of Circular Lining and Interior Linear Crack. Key Engineering Materials, Vol. 348-349(2007),pp.521-524

DOI: 10.4028/www.scientific.net/kem.348-349.521

Google Scholar

[4] Li Hongliang, Li Hong,Yang Yong:Dynamic Stress Intensity Problem of SH-Wave by Double Linear Cracks near A Circular Hole. Key Engineering Materials,Vol.385-387(2008),pp.105-108

DOI: 10.4028/www.scientific.net/kem.385-387.105

Google Scholar