Analysis of Temperature Distribution on Warm Forming of Aluminum-Magnesium Alloy

Article Preview

Abstract:

In this study, a temperature distribution of 5083-O aluminum-magnesium (Al-Mg) alloy is analyzed at various die and blank initial temperature conditions using finite element analysis approach. Temperature distribution results of the blank reveal that the dies must be heated to predetermined temperatures for successful warm forming, even the blank is kept at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

329-336

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.S. Cole, A.M. Sherman, Light weight materials for automotive applications, Mater Charact Vol. 35 (1995) 3-9.

Google Scholar

[2] E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, Light-weight structures produced by laser beam joining for future application in automobile and aerospace industry, J Mater Process Tech Vol. 115 (2001) 2-8.

DOI: 10.1016/s0924-0136(01)00756-7

Google Scholar

[3] D. Carle, G. Blount, The suitability of aluminum as an alternative material for car bodies, Mater Design Vol. 20 (1999) 267-272.

DOI: 10.1016/s0261-3069(99)00003-5

Google Scholar

[4] A. Tharumarajah, P. Koltun, Is there an environmental advantage of using magnesium components for light-weighting cars?, J Clean Prod., Vol. 15 (2007) 1007-1013.

DOI: 10.1016/j.jclepro.2006.05.022

Google Scholar

[5] J. W. Richards, Recent progress in the aluminum industry, J Franklin I., Vol. 149 (1900) 451-459.

Google Scholar

[6] E. Fuhrmann, The long-life car, Futures, Vol. 11 (1979) 216-223.

Google Scholar

[7] T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, J. Mater. Process. Tech., Vol. 113 (2001) 648-653.

DOI: 10.1016/s0924-0136(01)00650-1

Google Scholar

[8] K.J. Martchek, Modeling more sustainable aluminum: case study, Int J Life Cycle Ass., Vol. 11 (2006), 34-37.

Google Scholar

[9] U. Mildenberger, A. Khare, Planning for an environment-friendly car, Technovation, Vol. 20 (2000), 205-214.

DOI: 10.1016/s0166-4972(99)00111-x

Google Scholar

[10] H.G. Schwarz, S. Briem, P. Zapp, Future carbon dioxide emissions in the global material flow of primary aluminum, Energy, Vol. 26 (2001), 775-795.

DOI: 10.1016/s0360-5442(01)00032-9

Google Scholar

[11] S. S. Hecker and A. K. Ghosh, The Forming of Sheet Metal, Sci Am., Vol. 235 (1976), 100-108.

Google Scholar

[12] A. Portevin and A. L. Chatelier, A phenomenon observed during tension tests on alloys during transformation, Compt. Rend. Acad. Sci., Vol. 176 (1923), 507-512.

Google Scholar

[13] V.A. Phillips, Stretcher-Strain Markings in Aluminum Alloys and Methods for Their Elimination, Sheet Metal Industries, (1953), 977-982.

Google Scholar

[14] A. Van den Beukel, Theory of the effect of dynamic strain aging on mechanical properties, Phys. Stat. Sol. A, Vol. 30 (1975), 197-206.

DOI: 10.1002/pssa.2210300120

Google Scholar

[15] R. A. Mulford and U. F. Kocks, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Metall., Vol. 27 (1979), 1125-1134.

DOI: 10.1016/0001-6160(79)90130-5

Google Scholar

[16] P. G. McCormick and Y. Estrin, Transient flow behaviour associated with dynamic strain ageing, Scripta Met., Vol. 23 (1989), 1231-1234.

DOI: 10.1016/0036-9748(89)90332-3

Google Scholar

[17] L. P. Kubin and Y. Estrin, Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect, Acta Met. Mater., Vol. 38, ( 1990), 697-708.

DOI: 10.1016/0956-7151(90)90021-8

Google Scholar

[18] P. G. McCormick, Theory of Flow Localization due to Dynamic Strain Aging, Acta Metall., Vol. 36 (1988), 3061-3067.

DOI: 10.1016/0001-6160(88)90043-0

Google Scholar

[19] D. M. Li and A. Bakker, Temperature and Strain Rate Dependence of the Portevin-Lchatelier Effect in a Rapidly Solidified Al Alloy, Metall. Mater. Trans., Vol. 26 (1995), 2873-2879.

DOI: 10.1007/bf02669645

Google Scholar

[20] P. G. McCormick, Negative Strain Rate Sensitivity and The Development of Localized Yielding, A. K. Sachdev and J. D. Emburys, ed., Formability and Metallurgical Structure, The Metallurgical Society, Orlando, Florida, (1986), 227-244.

Google Scholar

[21] S. Toros, F. Ozturk, I. Kacar, Review of Warm Forming of Aluminum-Magnesium Alloys, J. Mater. Process. Tech., Vol. 207 (2008), 1-12.

DOI: 10.1016/j.jmatprotec.2008.03.057

Google Scholar

[22] P. Chen., Z. Lin, G. Chen., M. Koç, 2006, Parametric analysis of warm forming of aluminum blanks with FEA and DOE, T Nonferr Metal Soc., Vol. 16 (2006) 267-273.

DOI: 10.1016/s1003-6326(06)60045-9

Google Scholar

[23] T. Naka, Y. Nakayama, T. Uemori, R. Hino, F. Yoshida, Effects of temperature on yield locus for 5083 aluminum alloy sheet, J Mater Process Tech., Vol. 140 (2003) 494–499.

DOI: 10.1016/s0924-0136(03)00780-5

Google Scholar

[24] A.H. Van Den Boogaard, J. Huétink, Simulation of aluminum sheet forming at elevated temperatures, Comput Method Appl M., Vol. 195 (2006) 6691-6709.

DOI: 10.1016/j.cma.2005.05.054

Google Scholar

[25] A.H. Van Den Boogaard, R.J. Werkhoven, P.J. Bolt, Modeling of AlMg Sheet Forming at Elevated Temperatures, Int. J. Forming Proces., Vol. 4 (2001), 361–375.

DOI: 10.3166/ijfp.4.361-375

Google Scholar

[26] A.H. Van Den Boogaard, T. Meinders, J. Huétink, Efficient implicit finite element analysis of sheet forming processes, Int J Numer Meth Eng., Vol. 56 (2003), 1083-1107.

DOI: 10.1002/nme.600

Google Scholar

[27] A.H. Van Den Boogaard, J. Huétink, A.D. Rietman, Iterative Solvers in Forming Process Simulations, Simulation of Materials Processing: Theory, Methods and Applications: Numiform'98, (1998) 219-224.

Google Scholar

[28] F. Ozturk, S. Toros, S. Kilic, M. H. Bas, Effects of Cold and Warm Temperatures on Springback of AA 5083-H111, P I Mech Eng B-J Eng., Vol. 223 (2009) 427-431, ANSYS Inc, http: /www. ansys. com.

DOI: 10.1243/09544054jem1335

Google Scholar

[29] ANSYS Inc, http: /www. ansys. com.

Google Scholar