[1]
G.S. Cole, A.M. Sherman, Light weight materials for automotive applications, Mater Charact Vol. 35 (1995) 3-9.
Google Scholar
[2]
E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, Light-weight structures produced by laser beam joining for future application in automobile and aerospace industry, J Mater Process Tech Vol. 115 (2001) 2-8.
DOI: 10.1016/s0924-0136(01)00756-7
Google Scholar
[3]
D. Carle, G. Blount, The suitability of aluminum as an alternative material for car bodies, Mater Design Vol. 20 (1999) 267-272.
DOI: 10.1016/s0261-3069(99)00003-5
Google Scholar
[4]
A. Tharumarajah, P. Koltun, Is there an environmental advantage of using magnesium components for light-weighting cars?, J Clean Prod., Vol. 15 (2007) 1007-1013.
DOI: 10.1016/j.jclepro.2006.05.022
Google Scholar
[5]
J. W. Richards, Recent progress in the aluminum industry, J Franklin I., Vol. 149 (1900) 451-459.
Google Scholar
[6]
E. Fuhrmann, The long-life car, Futures, Vol. 11 (1979) 216-223.
Google Scholar
[7]
T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminum-magnesium alloy sheet, J. Mater. Process. Tech., Vol. 113 (2001) 648-653.
DOI: 10.1016/s0924-0136(01)00650-1
Google Scholar
[8]
K.J. Martchek, Modeling more sustainable aluminum: case study, Int J Life Cycle Ass., Vol. 11 (2006), 34-37.
Google Scholar
[9]
U. Mildenberger, A. Khare, Planning for an environment-friendly car, Technovation, Vol. 20 (2000), 205-214.
DOI: 10.1016/s0166-4972(99)00111-x
Google Scholar
[10]
H.G. Schwarz, S. Briem, P. Zapp, Future carbon dioxide emissions in the global material flow of primary aluminum, Energy, Vol. 26 (2001), 775-795.
DOI: 10.1016/s0360-5442(01)00032-9
Google Scholar
[11]
S. S. Hecker and A. K. Ghosh, The Forming of Sheet Metal, Sci Am., Vol. 235 (1976), 100-108.
Google Scholar
[12]
A. Portevin and A. L. Chatelier, A phenomenon observed during tension tests on alloys during transformation, Compt. Rend. Acad. Sci., Vol. 176 (1923), 507-512.
Google Scholar
[13]
V.A. Phillips, Stretcher-Strain Markings in Aluminum Alloys and Methods for Their Elimination, Sheet Metal Industries, (1953), 977-982.
Google Scholar
[14]
A. Van den Beukel, Theory of the effect of dynamic strain aging on mechanical properties, Phys. Stat. Sol. A, Vol. 30 (1975), 197-206.
DOI: 10.1002/pssa.2210300120
Google Scholar
[15]
R. A. Mulford and U. F. Kocks, New observations on the mechanisms of dynamic strain aging and of jerky flow, Acta Metall., Vol. 27 (1979), 1125-1134.
DOI: 10.1016/0001-6160(79)90130-5
Google Scholar
[16]
P. G. McCormick and Y. Estrin, Transient flow behaviour associated with dynamic strain ageing, Scripta Met., Vol. 23 (1989), 1231-1234.
DOI: 10.1016/0036-9748(89)90332-3
Google Scholar
[17]
L. P. Kubin and Y. Estrin, Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect, Acta Met. Mater., Vol. 38, ( 1990), 697-708.
DOI: 10.1016/0956-7151(90)90021-8
Google Scholar
[18]
P. G. McCormick, Theory of Flow Localization due to Dynamic Strain Aging, Acta Metall., Vol. 36 (1988), 3061-3067.
DOI: 10.1016/0001-6160(88)90043-0
Google Scholar
[19]
D. M. Li and A. Bakker, Temperature and Strain Rate Dependence of the Portevin-Lchatelier Effect in a Rapidly Solidified Al Alloy, Metall. Mater. Trans., Vol. 26 (1995), 2873-2879.
DOI: 10.1007/bf02669645
Google Scholar
[20]
P. G. McCormick, Negative Strain Rate Sensitivity and The Development of Localized Yielding, A. K. Sachdev and J. D. Emburys, ed., Formability and Metallurgical Structure, The Metallurgical Society, Orlando, Florida, (1986), 227-244.
Google Scholar
[21]
S. Toros, F. Ozturk, I. Kacar, Review of Warm Forming of Aluminum-Magnesium Alloys, J. Mater. Process. Tech., Vol. 207 (2008), 1-12.
DOI: 10.1016/j.jmatprotec.2008.03.057
Google Scholar
[22]
P. Chen., Z. Lin, G. Chen., M. Koç, 2006, Parametric analysis of warm forming of aluminum blanks with FEA and DOE, T Nonferr Metal Soc., Vol. 16 (2006) 267-273.
DOI: 10.1016/s1003-6326(06)60045-9
Google Scholar
[23]
T. Naka, Y. Nakayama, T. Uemori, R. Hino, F. Yoshida, Effects of temperature on yield locus for 5083 aluminum alloy sheet, J Mater Process Tech., Vol. 140 (2003) 494–499.
DOI: 10.1016/s0924-0136(03)00780-5
Google Scholar
[24]
A.H. Van Den Boogaard, J. Huétink, Simulation of aluminum sheet forming at elevated temperatures, Comput Method Appl M., Vol. 195 (2006) 6691-6709.
DOI: 10.1016/j.cma.2005.05.054
Google Scholar
[25]
A.H. Van Den Boogaard, R.J. Werkhoven, P.J. Bolt, Modeling of AlMg Sheet Forming at Elevated Temperatures, Int. J. Forming Proces., Vol. 4 (2001), 361–375.
DOI: 10.3166/ijfp.4.361-375
Google Scholar
[26]
A.H. Van Den Boogaard, T. Meinders, J. Huétink, Efficient implicit finite element analysis of sheet forming processes, Int J Numer Meth Eng., Vol. 56 (2003), 1083-1107.
DOI: 10.1002/nme.600
Google Scholar
[27]
A.H. Van Den Boogaard, J. Huétink, A.D. Rietman, Iterative Solvers in Forming Process Simulations, Simulation of Materials Processing: Theory, Methods and Applications: Numiform'98, (1998) 219-224.
Google Scholar
[28]
F. Ozturk, S. Toros, S. Kilic, M. H. Bas, Effects of Cold and Warm Temperatures on Springback of AA 5083-H111, P I Mech Eng B-J Eng., Vol. 223 (2009) 427-431, ANSYS Inc, http: /www. ansys. com.
DOI: 10.1243/09544054jem1335
Google Scholar
[29]
ANSYS Inc, http: /www. ansys. com.
Google Scholar