Effect of Flame Retardant on Flame Retardancy and Mechanical Properties of Glass Fiber/Polypropylene Composites

Article Preview

Abstract:

Composites based on polypropylene and glass fiber were prepared by melt mixing. The effect of magnesium hydroxide as a flame retardant on flammability and thermal behavior of glass fiber/polypropylene composites was studied. Ratio of glass fiber to magnesium hydroxide in each composite sample was varied. Maleic anhydride grafted polypropylene (MAPP) was used to improve the interfacial adhesion between polypropylene and fillers. Flammability and thermal behavior of the composites were examined using a horizontal burning test and a thermogravimetric analyzer, respectively. Morphology and mechanical properties of the composites were also investigated. Magnesium hydroxide reduced the flammability while improved thermal decomposition temperature of the polypropylene composites. However, magnesium hydroxide showed a negative impact on the tensile strength of the polypropylene composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

652-656

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Li, B. Li, and F. Tang: Eur. Polym. J Vol. 43 (2007), pp.2604-2611.

Google Scholar

[2] M. Van den Oever and T. Peijs: Appl. Sci. Manuf Vol. 29 (1998), pp.227-239.

Google Scholar

[3] P. Joseph and J.R. Ebdon, in: Fire Retardant Materials, edited by A.R. Horrocks and D. Price. CRC Press Publication/Woodhead Publishing, Boca Raton, FL (2001).

Google Scholar

[4] F. Montezin, J.M. Lopez-Cuesta, A. Crespy, and P. Georlette: Fire. Mater Vol. 21 (1997), pp.245-252.

Google Scholar

[5] M. Sain, S.H. Park, F. Suhara and S. Law: Polym. Degrad. Stab Vol. 83 (2004), pp.363-367.

Google Scholar

[6] H. Shen, Y. Wang and K. Mai: Thermo. Acta Vol. 483 (2009), pp.36-40.

Google Scholar

[7] J. Jang and E. Lee: Polym. Test Vol. 20 (2001), pp.7-13.

Google Scholar

[8] R.P. Hornby and C.L. Watson: Plast. Rubber. Proc. Appl Vol. 11 (1989), pp.45-51.

Google Scholar

[9] G. Pal and H. Macskasy: Plastics, Their Behaviour in Fires (Elsevier Publication, Netherland 1991).

Google Scholar

[10] M. Shigeo, I. Takeshi and A. Hitoshi: J. Appl. Polym. Sci Vol. 25 (1980), pp.415-425.

Google Scholar

[11] G.I. Titleman, Y. Gonen and S. Bron: Polym. Degrad. Stab Vol. 77 (2002), pp.345-352.

Google Scholar

[12] R.N. Rothom and P.R. Hornsby: Polym. Degrad. StabVol. 54 (1996), pp.383-385.

Google Scholar

[13] H. Dvir, M. Gottlieb and S. Daren: J. Appl. Polym. Sci Vol. 88 (2003), pp.1506-1515.

Google Scholar

[14] H. Dvir, M. Gottlieb and E. Tartakovsky: Compos. Sci. Technol Vol. 63 (2003), pp.1865-1875.

Google Scholar

[15] Y. Liu, C.L. Deng, J. Zhao, J. S. Wang, L. Chen and Y. Z. Wang: Polym. Degrad. Stab (2010), doi: 10. 1016/j. polymdegradstab. 2010. 02. 033.

Google Scholar

[16] Y. Chen and Q. Wang: Polym. Degrad. Stab Vol. 91 (2006), p.2003-(2013).

Google Scholar

[17] P. Mareri, S. Bastide, N. Binda and A. Crespy: Compos. Sci. Technol Vol. 58 (1998), pp.747-752.

Google Scholar

[18] W. Jiang, H. Liang, J. Zhang, D. He and B. Jiang: J. Appl. Polym. Sci Vol. 58 (1995), pp.537-539.

Google Scholar