Rapid Synthesis of Cyclomatrix Polyphosphazene Spheres and their Application for the Production of Microporous Carbon Spheres

Article Preview

Abstract:

Uniform cyclomatrix polyphosphazene spheres with diameter of about 410 nm were firstly synthesized rapidly at room temperature by precipitation polymerization of hexachlorocyclotriphosphazene with 4,4′-sulfonyldiphenol, using triethylamine as acid-acceptor and acetonitrile as solvent. Then, monodisperse carbon spheres with abundant micropores were produced by carbonization of the polyphosphazene spheres at a high temperature under a nitrogen atmosphere. As-produced carbon spheres were well characterized by SEM, TEM, EDX, and N2 adsorption technique. Results show that the carbon spheres possess an average diameter of 320 nm, a BET surface area of about 752 m2·g-1, a total pore volume of 0.55 m3·g-1, and a micropore size distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

188-191

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Mao, J.S. Qiu and L. Xing: Mater. Lett. Vol. 62 (2008), p.581.

Google Scholar

[2] M.B. Shiflett and H.C. Foley: Science Vol. 285 (1999), p. (1902).

Google Scholar

[3] S.I. Lee, S. Mitani, C.W. Park, S.H. Yoon, Y. Korai and I. Mochida: J. Power Sources Vol. 139 (2005), p.379.

Google Scholar

[4] De Q. Vu, W.J. Koros and S.J. Miller: J. Membr. Sci. Vol. 211 (2003), p.311.

Google Scholar

[5] R. Rajagopalan, A. Ponnaiyan, P.J. Mankidy, A.W. Brooks, B. Yi and H.C. Foley: Chem. Commun. Vol. 21 (2004), p.2498.

DOI: 10.1039/b407854c

Google Scholar

[6] J. Maruyama, K. Sumino, M. Kawaguchi and I. Abe: Carbon Vol. 42 (2004), p.3115.

Google Scholar

[7] Q. Wang, H. Li, L.Q. Chen and X.J. Huang: Solid State Ionics Vol. 152 (2002), p.43.

Google Scholar

[8] S.M. Saufi and A.F. Ismail: Carbon Vol. 42 (2004), p.241.

Google Scholar

[9] N. Job, R. Pirard, J. Marien and J.P. Pirard: Carbon Vol. 42 (2004), p.3217.

Google Scholar

[10] D. Hines, A. Bagreev and T.J. Bandosz: Langmuir Vol. 20 (2004), p.2388.

Google Scholar

[11] P.F. Gao, J.W. Fu, J. Yang, R.G. Lv, J.L. Wang, Y.N. Nuli and X.Z. Tang: Phys. Chem. Chem. Phys. Vol. 11 (2009), p.11101.

Google Scholar

[12] J.W. Fu, Q. Xu, J.F. Chen, Z.M. Chen, X.B. Huang and X.Z. Tang: Chem. Commun. Vol. 46 (2010), p.6563.

Google Scholar

[13] J.W. Fu, X.B. Huang, Y. Zhu, L. Zhu and X.Z. Tang: Macromol. Chem. Phys. Vol. 209 (2008), p.1845.

Google Scholar