Surface/Interface Synergetic Effect-Induced Great Optical Spectral Change with Ag Content for Ag Nanoparticles Dispersed in Mesoporous SiO2

Article Preview

Abstract:

The evolution of optical absorption and photoluminescence (PL) spectra with different Ag content (from 0.14 wt % to 2.80 wt %) has been investigated for Ag/mesoporous SiO2 when heating in H2 and air. It has been found that, in accordance with alternating heat treatment of the sample with fairly low Ag content in H2 and air, the surface plasmon resonance (SPR) absorption of Ag nanoparticles alternately and reversibly appears and disappears, whereas its PL emission alternately disappears and appears. However, such reversible change can not happen in the sample with high Ag content. With gradual increase of Ag content, the two kinds of spectra take great and regular change. The results have firstly been discussed based on two contrary mechanisms coexisting in air at high temperature (i.e., oxidation reaction and thermal reduction reaction). In particular, the abnormal oxidation and the great optical change with Ag content is closely relative to surface/interface synergetic effect between Ag, O2 and SiO2 matrix despite SiO2 usually being regarded as a chemical inert medium to noble metals. The study would provide valuable reference for optical switch, gas sensor, nano optical modulation of SiO2-based optical devices, and give valuable information for surface/interface chemistry and catalysis in Ag nanoparticles and SiO2 assemble system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-228

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Jiménez, S. Lysenko, H. Liu, E. Fachini, O. Resto, C.R. Cabrera, J. Lumin. 129(2009) 1546.

Google Scholar

[2] B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z. -Y. Li, D. Ginger, Y. Xia, Nano Lett. 7 (2007) 1032.

Google Scholar

[3] U. Kreibig, M. Vollmer, Optical properties of Metal clusters, Springer, New York, (1995).

Google Scholar

[4] J.A. Dieringer, K.L. Wustholz, D.J. Masiello, J.P. Camden, S.L. Kleinman, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 131 ( 2009) 849.

DOI: 10.1021/ja8080154

Google Scholar

[5] V. Hornebecq, M. Antonietti, T. Cardinal, M. Treguer-Delapierre, Chem. Mater. 15 (2003) (1993).

DOI: 10.1021/cm021353v

Google Scholar

[6] S.K. Medda, M. Mitra, G. De, J. Chem. Sci 120 (2008) 565.

Google Scholar

[7] D.K. Sarkar, F. Cloutier, M.A. El Khakani, J. Appl. Phys. 97 (2005) 084302.

Google Scholar

[8] A. Pan, Z. Yang, H. Zheng, F. Liu, Y. Zhu, X. Su, Z. Ding, Appl. Surf. Sci. 205 (2003) 323.

Google Scholar

[9] G. De, M. Gusso, L. Tapfer, J. Appl. Phys. 80 (1996) 6734.

Google Scholar

[10] K. -C. Lee, S. -J. Lin, C. -H. Lin, C. -S. Tsai, Y. -J. Lu, Surf. Coat. Technol. 202 (2008) 5339.

Google Scholar

[11] J. Hu, W. Cai, H. Zeng, C. Li, F. Sun, J. Phys.: Condens. Matter 18 ( 2006) 5415.

Google Scholar

[12] J. Hu, W. Cai, Y. Li, H. Zeng, J. Phys.: Condens. Matter 17 (2005) 5349.

Google Scholar

[13] W. Cai, L. Zhang, J. Phys.: Condens. Matter 8 (1996) L591.

Google Scholar

[14] W. Cai, L. Zhang, J. Phys.: Condens. Matter 9 (1997) 7257.

Google Scholar

[15] W. Cai, L. Zhang, H. Zhong, G. He, J. Mater. Res. 13 (1998) 2888.

Google Scholar

[16] H. Bi, W. Cai, H. Shi, X. Liu, Chem. Phys. Lett. 357 (2002) 249.

Google Scholar

[17] J. Hu, W. Cai, C. Li, Y. Gan, L. Chen, Appl. Phys. Lett. 86 (2005) 151915.

Google Scholar

[18] J. Hu, W. Lee, W. Cai, L. Tong, H. Zeng, Nanotechnology 18 (2007) 185710.

Google Scholar

[19] J. Hu, L. Wang, W. Cai, Y. Li, H. Zeng, L. Zhao, P. Liu, J. Phys. Chem. C 113(2009)19039.

Google Scholar

[20] Y.D. Glinka, S. -H. Lin, Y. -T. Chen, Appl. Phys. Lett. 75 (1999) 778.

Google Scholar

[21] L.A. Peyser, A.E. Vinson, A.P. Bartko, R. M. Dickson, Science 291 (2001) 103.

Google Scholar

[22] L. Bosi, M. Zelada, Chem. Phys. Lett. 284 (1998) 382.

Google Scholar

[23] C. Jiang, W. Hu, Q. Zeng, IEEE J. Quantum Electron. 39 (2003) 1266.

Google Scholar

[24] S. De, A. Pal, N.R. Jana, T. Pal, J. Photochem. Photobiol., A 131 (2000) 111.

Google Scholar