Zn0.9Co0.1O/ MCM-41 Composite: Synthesis and Magnetism

Article Preview

Abstract:

Cobalt doped zinc oxide diluted magnetic semiconductors (DMSs) were assembled in MCM-41 template by sol-gel method. Samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), physisorption, as well as the magnetism measurement. It was found that the wurtzite symmetry of the MCM-41 pores was not changed while the pore diameter became smaller after the DMSs deposited into the pores. The Zn0.9Co0.1O-MCM-41 presents a superparamagnetic behavior between 80K and 300K, while Zn0.9TM0.1O-MCM-41 (TM=Mn, Fe, Ni) samples are paramagnetic at the same temperature range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-83

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler: J. Appl. Phys. Vol. 93 (2003), p.1.

Google Scholar

[2] H. Ohno: Science Vol. 281 (1998), p.951.

Google Scholar

[3] S.J. Pearton, C.R. Abernathy, D.P. Norton, A.F. Hebard, Y.D. Park, L.A. Boatner, J.D. Budai: Materials Science and Engineering R 40 (2003) p.137.

DOI: 10.1016/s0927-796x(02)00136-5

Google Scholar

[4] Dana A. Schwartz, Nick S. Norberg, Quyen P. Nguyen, Jason M. Parker, and Daniel R. Gamelin, J. Am. Chem. Soc. Vol. 125 (2003), p.13205.

Google Scholar

[5] Jih-Jen Wu, Sai-Chang Liu, and Ming-Hsun Yang: Appl. Phys. Lett. Vol. 85 (2004) p.1027.

Google Scholar

[6] V. A. L. Roy, A. B. Djurisilic, H. Liu and X. X. Zhang: Appl. Phys. Lett. Vol. 84 (2004), p.756.

Google Scholar

[7] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen, T.P. Russell: Science Vol. 290 (2000), p.2126.

DOI: 10.1126/science.290.5499.2126

Google Scholar

[8] R. J. Tonucci, B. L. Justus, A. J. Campillo and C. E. Ford: Science Vol. 258 (1992), p.783.

Google Scholar

[9] F. J. Brieler, P. Grundmann, M. Frőba, L. Chen: J. Am. Chem. Soc. Vol. 126 (2004), p.797.

Google Scholar

[10] V. I. Srdanov, I. Alxneit, G. D. Stucky, C. M. Reaves, S. P. DenBaars: J. Phys. Chem. B Vol. 102 (1998), p.3341.

Google Scholar

[11] L. Chen, P. J. Karl, W. Heimbrodt, F. Brieler, M. Frőba; H. -A. Krug von Nidda, T. Kurz, A. Loidl: J. Appl. Phys. Vol. 93 (2003), p.1326.

Google Scholar

[12] T. Hirai, H. Okubo, I. Komasawa: J. Phys. Chem. B Vol. 103 (1999), p.4228.

Google Scholar

[13] T. Nagase, T. Ooie, J. Sakakibara: Thin Solid Films Vol. 357 (1999), p.151.

Google Scholar

[14] S. Kolesnik, B. Dabrowski, and J. Mais: J. Appl. Phys. Vol. 95 (2004), p.2582.

Google Scholar

[15] K. C. Kim, E. K. Kim, Y. S. Kim: Superlattice. Microst. Vol. 42 (2007), P. 246.

Google Scholar

[16] D. Paul Joseph, S. Ayyappan, C. Venkateswaran: J. Alloy. Compd. Vol. 415 (2006), P. 225.

Google Scholar